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Abstract 
 
The Stream Control Transmission Protocol (SCTP) is a 

reliable message-based transport protocol developed by 
the IETF that could replace TCP in some applications. 
SCTP allows endpoints to have multiple IP addresses for 
the purposes of fault tolerance. There is on-going work to 
extend the SCTP multihoming functions to support 
dynamic addressing and endpoint mobility. This paper 
explains how the multihoming and mobility features can 
be exploited for denial-of-service attacks, connection 
hijacking, and packet flooding. We propose 
implementation guidelines for SCTP and changes to the 
mobility extensions that prevent most of the attacks. The 
same lessons apply to multihomed TCP variants and other 
transport-layer protocols that incorporate some flavor of 
dynamic addressing. 

1. Introduction 
In this paper, we discuss the effects of mobility and 

multihoming on the threat models and security 
mechanisms used in designing transport-layer protocols. 
We focus on the Stream Control Transmission Protocol 
(SCTP) because it incorporates multihoming support and 
there are proposals for extending the protocol towards 
transport-layer mobility. Besides SCTP, the lessons from 
our security analysis apply to all transport-layer protocols 
that support multihoming or mobility with end-to-end 
signaling. 
Security is not the first goal we tend to associate with 

the transport layer. Nevertheless, transport protocols 
incorporate many features that have been designed with 
security in mind. The purpose of these features is to 
prevent spoofing of data and hijacking of connections and 
to mitigate denial-of-service threats. The best-known 
example is the TCP sequence numbers, which are 
initialized to an unpredictable random value in order to 
make packet spoofing more difficult. Another example is 
the congestion control and acknowledgement mechanisms 

that limit the number of packets sent into the network. 
Although these features were not originally introduced to 
prevent malicious behavior, their significance to security 
is now widely acknowledged. New transport protocols, 
such as SCTP, make security an explicit design objective.  
When a mobile Internet host changes its location and 

its point of access to the internet changes, its IP address 
typically changes. The aim of mobility protocols is to 
solve the following two problems: to enable continuous 
communication over address changes, and to provide a 
reachability mechanism whenever the mobile is connected 
to the Internet. Mobility solutions exist for all major 
protocol layers. Link-layer mobility protocols avoid IP 
address changes. Network-layer protocols (e.g., Mobile 
IP) hide them from the layers above. Transport-layer 
mobility protocols – the topic of this paper – maintain a 
continuous connection between two endpoints over 
address changes. Higher, session and application-layer 
solutions re-establish transport-layer connections after an 
address change. All these solutions have their advantages 
and disadvantages. Transport-oriented approaches to 
mobility and end-to-end security are in some ways natural 
because this is the first layer in the stack where we can 
differentiate communication endpoints from addresses. 
Moreover, the transport-layer controls data flows and, 
thus, is instrumental in preventing some packet-flooding 
attacks.  
A multihomed Internet host has multiple IP addresses. 

While the goal of mobility protocols is to enable 
communication for moving hosts, the aim of multihoming 
is typically to increase reliability in a static setting. When 
one address fails, communication is switched to another 
one. However, despite their different goals, mobility and 
multihoming can be seen as two flavors of the same 
phenomenon: dynamic multi-addressing. That is, a 
multihomed or mobile endpoint has a set of IP addresses 
that changes dynamically. In this paper, we are interested 
in the whole spectrum of such behavior.  
Multihoming and mobility affect the security of 

transport protocols in several ways. First, existing security 
mechanisms are often based on implicit assumptions of a 



static network topology and unchanging addresses. When 
the assumptions are invalidated, the existing security 
mechanisms may become ineffective. Second, it is 
possible to misuse mobility signaling. Potential attacks 
include denial of service by preventing legitimate 
communication, connection hijacking, spoofing and 
intercepting data, and redirecting packet flows to the 
target of a flooding attack. We found such security issues 
in SCTP and in several other transport-layer protocols that 
support multihoming or mobility. Fortunately, it turns out 
that the vulnerabilities can be remedied with relatively 
small changes to the transport-protocol specifications and 
implementations. 
In addition to reviewing protocol specifications for 

vulnerabilities, we looked at three open-source SCTP 
implementations to check that the attack scenarios 
described in this paper are realistic. It should be noted that 
the paper describes the specifications and implementations 
as they were at the time of writing. The SCTP 
implementation guidelines and major implementations 
have since been updated to reflect many of our discoveries 
and we believe that the remaining issues can be solved 
satisfactorily.  
We only briefly mention strong end-to-end protection 

of user data in this paper. SCTP and TCP are both 
vulnerable to man-in-the-middle attacks where the 
attacker is on the path between the endpoints. The security 
mechanisms commonly used in transport protocols are 
relatively weak, similar to the random initial sequence 
numbers in TCP. In general-purpose transport-layer 
protocols, such weak mechanisms are preferable to 
expensive cryptographic operations and reliance on a 
security infrastructure. The focus of this paper is on the 
changes that are needed to the weak security mechanisms 
when the transport protocols support multihoming and 
mobility.  

The rest of the paper is organized as follows. We first 
describe SCTP in Section 2. Section 3 discusses security-
critical assumptions that are invalidated or weakened by 
the introduction of general-purpose multihoming and 
mobility. Section 4 covers the details of some interesting 
attacks that arise from the invalid assumptions. Section 5 
suggests low-cost modifications to the SCTP protocol and 
Section 6 mentions some implementations. In Section 7, 
we briefly examine similar security issues in other 
transport-layer protocols that support dynamic addressing. 
Section 8 surveys related work and Section 9 concludes 
the paper. 

2. SCTP protocol 
The Stream Control Transmission Protocol (SCTP) 

[23] is a standard transport-layer protocol for the IPv4 and 
IPv6 Internet. SCTP was originally intended for the 
transport of PSTN telephony signaling messages over IP 
but it is now specified as a general-purpose alternative to 
TCP and UDP. The general applicability implies that any 
security mechanisms in the protocol will have to work 
correctly in a much wider range of settings than just 
telephony signaling. 
The designers of SCTP have carefully considered past 

lessons on transport-protocol security. For example, the 
security function of TCP sequence numbers has been 
factored into a separate mechanism and the respondent 
remains stateless during the handshake in order to prevent 
state-exhaustion attacks. However, the design of Internet 
mobility protocols has brought attention to some new 
types of denial-of-service attacks that were not known or 
fully appreciated during the SCTP design process. It is 
important to prevent these attacks because, in some cases, 
not only the SCTP endpoints but also third parties may be 
exposed to denial-of-service.  

Endpoint A Endpoint B

INIT(TagA,{AddrA1,AddrA2})
TagA, INIT ACK (TagB,
CookieB,{AddrB1,AddrB2})

TagA, COOKIE ACK

TagA, ACK, DATA

Association 
establishedAssociation 

established

Stateless
TagB, COOKIE ECHO (CookieB)

TagB, DATA

 
Figure 1: SCTP handshake 



This section describes SCTP with focus on features 
that are relevant to the following discussion on its 
security. For a complete description of SCTP, we refer the 
reader either to the protocol specification [23] or to the 
book by Stewart and Xie [22].  

2.1. Protocol basics 
An SCTP association is a relationship between two 

SCTP endpoints. An endpoint is a set of transport 
addresses and a transport address consists of a network-
layer address and a port number. In SCTP, all transport 
addresses of an endpoint must share the same port 
number. Thus, in practice, an SCTP endpoint is identified 
with a non-empty set of IP addresses and a single port 
number. For the purposes of this paper, a pair of transport 
addresses is called a path. Each transport address can 
belong to only one endpoint at a time. This means that no 
special endpoint identifiers are needed. The receiver of an 
SCTP packet identifies the source and destination 
endpoints and the association to which the packet belongs 
based on the source and destination IP addresses and port 
numbers.  
An SCTP packet comprises a common header and zero 

or more chunks. The chunks may carry either SCTP 
signaling information or user data (DATA chunk). 
Multiple chunks, such as data and acknowledgements, 
may be bundled into one packet. SCTP provides ordered 
and reliable multi-stream transport but this is largely 
irrelevant to our discussion and we skip the details.  
Figure 1 shows the messages sent during a typical 

SCTP association setup, which is a 4-way handshake. The 
messages in the figure are identified by the names of the 
signaling chunks that they contain. Although not shown in 
the figure, user data can be bundled into the third and 
fourth messages of the handshake, thus saving one round 
trip. 

2.2. Verification tags  
In the two first messages of the handshake, the 

endpoints exchange random 32-bit nonces. The header of 
all but the first packet from Endpoint A to B must include 
B’s nonce. Correspondingly, B must include A’s nonce in 
the header of all packet that it sends to A. The SCTP 
specification calls the nonces verification tags (denoted by 
TagA and TagB in Figure 1.) 
The verification tags serve the same security purpose 

as the randomly initialized sequence numbers in TCP. 
That is, they provide a level of security against packet 
spoofing. In SCTP, the security function and the sequence 
numbers have been factored into separate mechanisms. 
Obviously, the verification tags are not a very strong 
security mechanism. Any node that sees packets 

belonging to the association learns the verification tag 
values and can consequently spoof packets for that 
association.  

2.3. Multi-homing and failover 
During the SCTP handshake, each of the two endpoints 

may send to the other a list of IP addresses (in the INIT 
and INIT ACK chunks). Each endpoint selects one of the 
peer’s addresses as the primary destination address, and 
one of it owns addresses as the best source address for 
routing packets to the destination. If the choice is not 
mandated by the upper-layer protocol, the algorithm for 
choosing the destination address is implementation 
dependent. The typical choice is either the source address 
of the first received packet or the first address in the 
peer’s list.  
Each endpoint sends all packets from the chosen source 

address to the primary destination address. The other 
addresses are used only if the primary path fails, i.e., if the 
primary destination address becomes unreachable. The 
policy for selecting the new address pair in failover is 
implementation dependent.  
Each endpoint monitors the reachability of the 

secondary addresses of its peer so that it always knows 
which addresses are available for the failover. The 
monitoring is done by sending a heartbeat request (a 
HEARTBEAT chunk) to an idle destination address, 
which the peer acknowledges. The default frequency for 
the heartbeats is every 30 seconds. The implementation 
may start sending heartbeat requests immediately after the 
association has been established but it is not required to do 
so.  
The heartbeat request contains a field for sender-

specific information, which the peer will copy verbatim to 
the heartbeat acknowledgement. The exact contents of this 
field are not specified but the SCTP specification suggests 
including the destination address and a timestamp. The 
idea is that the requester can process the 
acknowledgements without storing the details of each 
individual heartbeat request it has sent. 

2.4. State cookie 
An important feature of the SCTP handshake is that the 

respondent (Endpoint B) remains stateless between 
sending the second and receiving the third message. The 
respondent encodes the protocol state, including the 
contents of the INIT, into a state cookie, which it sends to 
the initiator (Endpoint A) in the INIT ACK. The initiator 
returns the cookie to the respondent in the COOKIE 
ECHO. This prevents state-exhaustion attacks similar to 
the TCP SYN flooding [18].  



The SCTP specification gives some guidelines on what 
data should go into the state cookie but the exact format of 
the cookie depends on the respondent implementation. 
The respondent must protect the integrity of the cookie 
with a message authentication code (MAC). No key 
distribution is needed because the respondent both creates 
and verifies the MAC with a local secret key that it never 
reveals to anyone else. The cookie also contains a 
timestamp to limit replays.  
If an endpoint receives an INIT chunk from a peer with 

which it already has an association state, it needs to 
distinguish between several possible causes. The 
verification tags have a special role in accomplishing that. 
The two endpoints may have initiated the association 
simultaneously, thus causing a handshake collision, or the 
peer may have been restarted and is trying to re-establish 
the association. Moreover, messages can be duplicated, 
reordered, delayed, or lost. In order to determine which of 
the various complex scenarios occurred, the endpoint that 
responds to the unexpected INIT includes the verification 
tags of the existing association in the state cookie, where 
they are called tie tags. This helps it to decide how to 
proceed after receiving the third message.  

2.5. Acknowledgements  
SCTP acknowledgements combine both selective and 

cumulative information but we only need to consider the 
latter. The acknowledgements contain a cumulative 
sequence number for the received data in which no gaps 
remain. Like TCP, an SCTP endpoint maintains 
congestion windows that limit the amount of 
unacknowledged data that may be in flight at a time. 
There is a separate window for each transport address of 
the peer endpoint. The window size is calculated with a 
TCP-like algorithm that includes slowstart and 
congestion-avoidance phases, and is limited by the 
receiver’s advertised buffer space.  
An interesting piece of information for our discussion 

is that the receiver can, with one cumulative 
acknowledgement, acknowledge all the outstanding 
packets in the congestion window. Thus, a receiver that is 
willing to break the protocol rules can maintain a data 
flow by sending only one cumulative acknowledgement 
for each congestion-window-size block of data. On the 
other hand, SCTP protects against the ACK-splitting and 
optimistic-ACKing attacks outlined by Savage et al. [17]. 
The receiver needs to acknowledge individual packets in 
order to accelerate the sending rate. 

2.6. ABORT and ICMP error messages  
The SCTP specification defines the ABORT chunk for 

closing an association in an error situation. For example, 

an endpoint sends an ABORT when it receives an out-of-
the-blue packet, i.e., one that does not match any existing 
association. This causes the receiver of the ABORT to 
delete its association state. 
It is clearly important to prevent the spoofing of 

ABORT messages but the end endpoint that receives an 
out-of-the-blue packet has no matching association state 
and does not know what the peer’s verification tag is 
supposed to be. SCTP solves this dilemma by using the 
verification tag from the out-of-the-blue packet instead. 
The tag proves that the sender of the ABORT has at least 
seen a packet that belongs to the association.  
The abort mechanism is, of course, used only by nodes 

that support the SCTP protocol. When a non-SCTP node 
receives an out-of-the-blue SCTP packet, it either sends 
an Internet Control Message Protocol (ICMP) error 
message or it silently discards the packet. The possible 
ICMP messages are “Destination unreachable” and 
“Unknown next header type” (the latter in IPv6). Spoofing 
of ICMP error messages is prevented in way similar to the 
ABORT. The sender of an ICMP message copies some 
bytes from the beginning of the violating packet, 
including the verification tag, to the error message. The 
SCTP specification does not say how an endpoint should 
react to a received ICMP error message. 

2.7. Dynamic address reconfiguration 
Standard SCTP supports multihoming with a static set 

of addresses. We will now look at a proposed SCTP 
extension, dynamic address reconfiguration [21], which 
enables dynamic multi-addressing. It is worth 
remembering that this extension is work in progress and 
the correct forum for discussing its details is the relevant 
IETF working group. The proposal was originally 
intended for infrequent address changes, such as network 
renumbering, but there have been many ideas on using it 
as a mobility mechanism [7][9][26]. In this paper, we will 
focus on the general lessons that can be learned about the 
security of transport-layer mobility.  
The proposal defines a new SCTP chunk type 

ASCONF. An endpoint uses the ASCONF chunk to notify 
its peer about changes to its address set. The chunk 
contains one or more instructions for adding and deleting 
addresses and for setting the primary address. The 
recipient executes these instructions in the order in which 
they appear in the chunk. It is easy to see how such 
instructions can be used to implement a location update: 
add the new address, set it as the primary address, and 
delete the old address. (See the right-hand side of Figure 3 
for an example.)  



3. Assumptions invalidated by mobility  
In this section, we consider several implicit 

assumptions that were made in the design of the SCTP 
protocol. Most of these assumptions are entirely 
reasonable if the protocol is used for its original purpose, 
i.e., for telephony signaling. We show that they are not 
necessarily true when SCTP is used as a general-purpose 
transport protocol for multihomed or mobile endpoints.  

3.1. Static vs. dynamic network topology 
As we already mentioned, if an attacker sees SCTP 

packets belonging to an association and learns the 
verification tags, it can spoof packets for the same 
association. To be able to spoof packets in both directions, 
the attacker needs to see one packet in each direction 
(unless it sees the INIT ACK). This weakness is usually 
considered acceptable because the set of nodes on a path 
between two transport addresses and, consequently, the 
number of potential attackers that can see the tags is 
relatively small.  
Multihomed endpoints, however, have several possible 

paths between them, which may all be tested when 
recovering from a path failure. The SCTP specification 
encourages trying all different source-destination address 
pairs. If this is implemented, the number of potential paths 
grows quadratically with the number of addresses per 
endpoint. Thus, the number of network nodes that can 
sniff the verification tags may increase rapidly with the 
number of secondary addresses and with the frequency of 
communications or endpoint failures.  
The situation becomes even worse if the endpoints are 

mobile and use dynamic address reconfiguration. Anyone 
along any past path between the endpoints may have seen 
the verification tags. Moreover, mobile endpoints are 
often located in wireless networks, which due to their 
broadcast nature expose the packets to sniffing. Thus, the 
assumption that the tags will only be seen by a small fixed 
set of nodes no longer holds. On the contrary, the longer 
the association lifetime and the more often the mobile 
moves, the larger group of nodes that have an opportunity 
to sniff the tags. 
The general lesson on transport-layer security is that 

plaintext secrets (verification tags, secret sequence 
numbers, nonces, etc.) that can be used in more than one 
message are more vulnerable with multihomed or mobile 
endpoints than in a static setting. They may still be 
acceptable as security mechanisms if the rate of change is 
slow and connection lifetimes limited. 

3.2. Faith of old addresses 
Another assumption made in the standard SCTP 

protocol is that the transport addresses belong to the 
association endpoints until the end of the association 
lifetime. The danger of this assumption is that if the 
endpoint loses control of an address and the address is 
subsequently allocated to another node, the peer will 
continue to send packets (such as heartbeat requests) to 
the lost address. The new owner of the address will 
receive the packets and learn the verification tags in them. 
If the new owner of the address is malicious, it may use 
this information for spoofing attacks. 
In the currently typical SCTP applications, such as 

telephony signaling, the risk of attacks caused by this 
vulnerability is small. Multihomed SCTP endpoints 
usually do their best to ensure that they retain all their 
addresses throughout the association lifetime, for 
example, by using only statically configured IP addresses. 
On the other hand, when the dynamic-address-
reconfiguration mechanism is used for mobility, it 
becomes normal for an endpoint to leave an address. 
While the mobile endpoint will send delete-address 
instructions to its peers, some packets will usually be in 
flight when the address change occurs and may end up at 
a new owner of the address.  
The general lesson for mobility-protocol design is that 

we should consider what happens to the old addresses of 
the mobile node, and the possibility that an attacker gains 
control of one. 

3.3. Who ate the cookie 
There is one peculiar feature in the SCTP protocol that 

makes it particularly dangerous for an endpoint to lose an 
IP address to an attacker. One might think that the attacker 
cannot do anything because it does not know the 
verification tags for the association, but that is not true. 
Recall that the state cookie in the second message of the 
handshake (INIT ACK) contains the verification tags of 
any existing association between the same endpoints. The 
attacker can use the state-cookie mechanism as an oracle 
to discover both verification tags of the association whose 
address it controls.  
The attacker starts by sending an INIT to the peer 

endpoint using the same IP address and port number as in 
the existing association. (It does not need to list any 
secondary addresses.) The peer automatically responds 
with an INIT-ACK that contains a state cookie. Inside the 
state cookie, the attacker finds both verification tags. The 
location of the tags in the cookie depends on the peer-
endpoint implementation but it is not hard to guess.  
The worst part is that the attacker usually does not need 

to know the correct port number, the peer’s address, or 



even that the association exists. This is because the arrival 
of any packet belonging to the association (such as a 
heartbeat request) alerts the new address owner to the 
opportunity for misuse. A single packet also provides all 
the necessary information for the above attack.  
The conclusion we draw from this section is that it is 

dangerous to trust secrets to a peer that has just exhibited 
symptoms of a failure, even though it may be tempting to 
do so in the hope of a quick recovery. 

3.4. Correctness of the address sets 
In a telephone signaling system, it is reasonable to 

assume that the endpoints know their own addresses and 
even each other’s address sets. They can also be trusted to 
give each other correct information about their secondary 
addresses in the handshake messages. The heartbeat 
mechanisms is used to monitor the peer addresses but its 
purpose is to discover which addresses are currently 
reachable, not to cast any doubt on whether the addresses 
were correct to begin with.  
In a general-purpose multihoming protocol, on the 

other hand, we need to prepare for the possibility that the 
endpoints sometimes make mistakes about their address 
sets and even purposely misrepresent them. Moreover, we 
cannot expect there to be any application-level 
verification or recovery mechanism that would mitigate 
the consequences of such false information. Thus, when 
SCTP is used as a general-purpose transport protocol, we 
need to worry about attacks where the endpoints lie about 
their addresses. 
This concern about the correctness of the peer’s 

addresses is not specific to SCTP. In any multihoming or 
mobility protocol, we need to consider the possibility of 
an endpoint making false claims about its addresses.  

3.5. Address ownership  
Two SCTP endpoints are not supposed to share the 

same transport address, i.e., the same IP address and port 
number. The original SCTP specification does not define 
how an endpoint should react if two of its peers have a 
common transport address. However, there is an 
implementation guideline [20] for rejecting INIT packets 
that do not match any existing association but contain an 
address that is already used in one. This prevents 
situations where two endpoints share a transport address.  
To be precise, the guideline says that if an endpoint 

receives an INIT that otherwise matches an existing 
association but has new addresses added to it, the endpoint 
receiving the INIT will respond with an ABORT, instead 
of the usual INIT ACK. The reason for issuing this 
guideline was that early SCTP implementations were 
vulnerable to an address-injection attack: when they 

received an INIT chunk that matched an existing 
association but contained an additional secondary address, 
the implementations processed the INIT as an indication 
of a peer restart and added the new address to the re-
established association.  
Following the guideline effectively means that the first 

peer to start using a transport address as either a primary 
or as a secondary address gets the priority to it. Any later 
claims by others to the same address are treated as errors.  
An address conflict in a telephony signaling protocol is 

probably an operator error and it is best to report the error 
and let the operator resolve it. The situation changes when 
we consider a general-purpose transport protocol. There 
may not be any operator that could help. Thus, it is 
essential to either avoid the conflicts or to resolve them 
automatically in a fair way. 

3.6. Value of spoofing a single packet 
SCTP prevents packet spoofing with the 32-bit 

verification tags. Nodes that want to spoof packets for an 
association must either be on the path between the 
association endpoints or guess the verification tag value. It 
is obvious that the 32 secret bits are not sufficient to 
prevent an off-path attacker from occasionally guessing 
the right value and succeeding to spoof a single packet. If 
the attacker knows the right port numbers and sends 232 
packets to the attack target, one of them will have the 
correct verification tag and will be accepted.  
The SCTP designers have reasonably decided that such 

a brute-force attack is not a major threat. First, it requires 
huge effort on the attacker’s part to spoof a packet. 
Second, the benefit is limited to spoofing a single packet. 
In order to spoof a second packet, the attacker needs to 
repeat the effort. Probably the best option for the attacker 
is to send ABORT chunks and try to terminate the 
association for denial of service. Experience from the TCP 
protocol, where Reset packets can be similarly spoofed, 
shows that this kind of attacks are not a major threat in 
practice. 
Dynamic address reconfiguration changes the situation 

considerably. If the attacker manages to spoof an 
ASCONF chunk, it can add its own address to the peer 
endpoint and set it as the primary address. While the 
attack still requires in the order of 232 packets 
(approximately 200 gigabytes in IPv4) to succeed, the 
reward is the complete control over the association. Thus, 
the brute-force attack has become much more attractive. 
With the current network technology, the attack is feasible 
only if the attacker has a particularly high-bandwidth 
connection to the target but this may change as the 
Internet bandwidth grows. Fortunately, the authors of [21] 
have been aware of the dangers and are working on a 
stronger ASCONF authentication mechanism.  



In any protocol with dynamic addressing, it is 
important to consider the possibility of spoofed signaling 
messages as well as spoofed data. The cost-benefit trade-
offs may be quite different for different types of messages 
and the addition of new signals may render existing 
protection insufficient. 

3.7. Importance of error messages 
The SCTP specification defines clear rules for sending 

an ABORT in response to out-of-the-blue packets and for 
processing the ABORT. Non-SCTP nodes should respond 
to an out-of-the-blue SCTP packet by sending an ICMP 
error message, either “Destination unreachable – protocol 
unreachable” in IPv4 or “Parameter problem - 
unrecognized next header type” in IPv6. Like ABORT, 
these error messages indicate that the recipient did not 
want to receive the packet. Firewalls and routers may also 
respond with ICMP “Destination unreachable”, which 
sometimes signals unwillingness to receive SCTP packets. 
It is surprising that the SCTP specification does not 
mention the issue of processing ICMP error messages.  
Implementations at the time of writing this paper were 

not much better. Two of the implementations that we 
reviewed (see Section 6) ignore all the critical ICMP 
messages and one processes only some of them. This is 
probably an attitude inherited from TCP implementations, 
which often treat ICMP messages in the same way.  
The difference between TCP and SCTP is, however, 

that multihoming makes the error messages much more 
important. It can, for example, happen that an endpoint 
loses control of a secondary address and that a new owner 
of the address wants to stop packets being sent to it. With 
the dynamic address reconfiguration and mobile 
endpoints, it is even more likely that packets end up being 
sent to a wrong address. If the sender of the offending data 
takes no notice of the error messages, the recipient has no 
way of defending itself. The same, of course, applies to 

any transport protocol with multihoming and mobility 
support. 

4. Redirection attacks 
This section describes complete attack scenarios 

against SCTP, which all depend on one or more of the 
protocol weaknesses discovered in Section 3. The attacker 
can prevent communication between honest endpoints by 
squatting their addresses, hijack an association without 
being on the route between the endpoints, trick a server to 
flood a target address with data, and forward associations 
in an unexpected way. Obviously, the more full-featured 
the mobility protocol is, the more flexibility the attacker 
has. Nevertheless, we will see that even static 
multihoming may make a transport protocol vulnerable to 
some attacks. 

4.1. Address squatting 
The way SCTP resolves address conflicts, i.e., 

situations where two endpoints share an address, can be 
exploited in a denial-of-service attack. That is, an attacker 
can “squat” addresses. Consider the scenario in Figure 2. 
Two honest endpoints B and C try to communicate while 
the attacker A wants to prevent them. If the attacker 
knows the transport address of C, it can create an 
association with B using the same port number and 
include one of C’s addresses as a secondary address in its 
own address list. When C tries to create an association 
with B, there will be an address conflict between the two 
associations (A-B and C-B). B will reject the INIT from C 
and respond with an ABORT. Thus, C will fail to 
establish an association with B.  
In order for the above attack to succeed, the attacker 

needs to know or guess which port number C will use 
when connecting to B. This attack works particularly well 
against applications like telephony signaling where the 

Client A 
Attacker Server B Client C 

INIT(… {AddrA, AddrC})

ABORT 
Potential attack  

detected 
INIT(… {AddrC, Addr D})

Hanshake failed  

Complete  
handshake  

 
Figure 2: Address squatting 



port numbers for both endpoints of an association are 
often fixed and well known. In other applications, the 
attack is slightly more difficult to execute because the 
attacker will either have to squat all 216 port numbers or it 
has to guess which numbers are more likely. The guessing 
is not as difficult as it may appear because current 
implementations typically allocate port numbers 
sequentially. The effectiveness of the attack also depends 
on the timing of heartbeat requests, which varies between 
implementations. If B sends a heartbeat request to the 
squatted address, it will receive an ABORT from A, 
which will terminate the squatter’s association.  
The address-squatting attack is perhaps the most 

serious threat that we discovered against the standard 
SCTP protocol when used for its original application. It 
could lead to serious denial-of-service issues when SCTP 
is used for transporting telephony signaling over the 
public Internet. 

4.2. Association hijacking 
An attacker that is permanently on the route between 

the two endpoints can mount a man-in-the-middle attack 
and hijack the entire association. Like the SCTP 
designers, we accept that unless a strong end-to-end 
security mechanism is used, we cannot solve this problem. 
Instead, we are interested in stopping attackers that only 
temporarily or accidentally see packets belonging to the 
association.  
In Sections 3.1-3.3, we explained several ways in 

which mobility and a carelessly designed state-cookie 
mechanism make it more likely that an attacker learns the 
verification tag values. In this section, we will consider 
the consequences of such a compromise if the endpoints 
support dynamic address reconfiguration. 

Figure 3 shows a worst-case scenario that combines 
several of the vulnerabilities discussed in Section 3. An 
attacker C is the new owner of an IP address from which a 
mobile endpoint A has just moved away. The attacker also 
has a second IP address AddrC. The attack is triggered 
when the attacker receives a packet that belongs to the A-
B association. The attacker uses B and the state cookie 
mechanism as an oracle to discover the verification tags of 
the A-B association. The attacker then sends an ASCONF 
chunk to B in order to add its other address AddrC to the 
association. The ASCONF from the attacker arrives at B 
before the one from the mobile endpoint A does so that B 
still accepts packets from A’s old address. Later, the 
attacker sets this address as the primary address. As a 
result, the attacker has managed to hijack the association 
from the mobile endpoint A.  
Admittedly, this attack depends on a number of 

assumptions and on unfortunate timing of the events. 
Experience from security protocol design shows, however, 
that attacks that initially appear theoretical may, in the 
right circumstances, become practical.  

4.3. Bombing attack 
The idea in the bombing attack is that the attacker 

redirects a data flow to a target node in order to flood it 
with packets. In order for the attack to make sense, the 
attacker must get someone else to send the packets, and 
the number of packets arriving at the target must be larger 
than the number of packets sent by the attacker. Even a 
relatively small amplification factor can have serious 
consequences if it is used in connection with a distributed 
denial-of-service attack. In this section, we explain how 
SCTP multihoming and mobility can be exploited in such 

Attacker C
at OldAddrA/AddrC Endpoint B

INIT(...,{OldAddrA})

TagB, ASCONF(add AddrC)

... CookieB(TagA,TagB) ...

TagA,DATAPacket to A 
arrives at 
OldAddrA Attacker uses B 

as oracle to 
discover tags

Endpoint A
at NewAddrA

TagB, ASCONF(set primary AddrC)

TagB,ASCONF
(add NewAddrA,

set primary NewAddrA,
delete OldAddrA)

 
Figure 3: Association hijacking 



attacks if SCTP is used as a general-purpose transport 
protocol. 
As shown in Figure 4, an attacker A starts by creating 

an association with a public server B, such as a web server 
that supports SCTP. In its own list of addresses in the 
INIT chunk, the attacker includes both its own IP address 
and the IP address of the target C. The attacker then starts 
downloading a data stream, such as a large data file, from 
the server. Immediately thereafter, the attacker stops 
sending any packets, including acknowledgements. This 
causes the server to switch to using the target address as 
the primary address. As a result, the data flow from the 
server will be redirected to the target. Note that the 
failover needs to happen before the server sends the first 
heartbeat request to the target address. 
The next step is to spoof acknowledgements from the 

target C to the server B. The attacker can do this because 
it knows the verification tag values. In order to accelerate 
the rate at which the server sends data to the target, the 
attacker should spoof an acknowledgement for each data 
packet. After the initial acceleration, the attacker only 
needs to send one acknowledgement per congestion 
window in order to sustain the data flow. The attacker will 
have to guess or measure the maximum sustainable rate at 
which the server can send data so that it knows when to 
stop accelerating the data flow and does not get ahead in 
the acknowledgements.  
As described above, the bombing attack works with 

standard SCTP multihoming. The same attack can be 
executed more effectively with the dynamic address 
reconfiguration functions. The attacker does not need to 
wait for the server to switch to the target address after a 
timeout. Instead, it can immediately set the target address 
as the primary address.  

There is one major limitation to the above attack.  As 
explained in Section 2.6, a target that supports the SCTP 
protocol will respond with an ABORT and the server will 
stop sending data. This means that the target has to be a 
non-SCTP node or a non-existent address, in which case 
the real target is the router towards the network of that 
address. The non-SCTP nodes and routers may respond 
with ICMP error messages but the current SCTP 
implementations typically ignore them. 
The bombing attack is attractive for the attacker 

because it can direct a large data flow from the server to 
the target while only sending and receiving a few 
messages itself. The attacker does not even need to spoof 
the source IP address of the acknowledgements as it is 
legal for them to come from a secondary address. The 
attack is more damaging if several data streams are 
redirected to the same host or router.  

4.4. Association forwarding 
This section describes an unexpected feature of the 

SCTP multihoming: association forwarding. Invoking this 
feature does not constitute an attack in itself but we 
conjuncture that, if not well understood by application 
designers, it could be exploited as a building block in 
application-level attacks. 
Like in any other transport protocol, a node can act as a 

proxy between two SCTP endpoints. The proxy acts as a 
server for a client and as a client for a server and forwards 
upper-layer data between the two. Assume, as in Figure 5, 
that endpoint A initiates a connection with endpoint B. B 
can (with or without A’s knowing) open an association to 
another server C and act as a proxy between A and C. 

Client A
Attacker Public Server B Address C

 Target
INIT(TagA,{AddrA,AddrC})

TagA, ACK, DATA

TagA, DATA
Failover to Addr C, Slowstart

TagB, ACK

Ignored
TagB, DATA(HTTP Request)

Complete 
handshake

Non-SCTP host
TagA, INIT ACK(TagB,{AddrB})

 
Figure 4: Bombing attack exploiting static multihoming 



Whether this behavior is desirable depends on the 
application requirements.  
In SCTP, the proxy can go one step further: it can 

remove itself from the middle and let A communicate 
directly with C. B uses two tricks to achieve this. The first 
trick is to use the same port numbers and verification tags 
for both associations (A-B and B-C). B waits for 
connections at the same well-known port number as C. 
When B receives an INIT from A, B copies A’s port 
number and tag to its own INIT to C. After receiving the 
INIT ACK from C, B copies C’s tag to its own INIT ACK 
to A. As a result, both associations use the same pair of 
port numbers and the same pair of verification tags. The 
second trick is to switch over to the direct path A-C. In its 
INIT chunk to C, B includes A’s transport address as a 
secondary address. In the INIT ACK to A, B includes C’s 
transport address as a secondary address. After the 
handshake, B stops responding to A’s and C’s packets. 
This causes A and C to switch to communicating directly. 
B will not receive any further packets, except occasional 
heartbeat requests, which it can ignore. There is also a 
variation of this scenario where the server connects two 
simultaneously connecting clients to each other and 
removes itself from the middle. The dynamic address 
reconfiguration functions would, of course, make the 
switching to direct communication faster. 
It is not clear how serious this kind of association 

forwarding is. On one hand, it is unexpected and 
potentially unwanted behavior. The attacker could, for 
example, continue to insert occasional application-level 
messages into the association in order to trick A and C 
into communicating unnecessarily. On the other hand, 
association forwarding does not necessarily violate any 
well-defined security policy. It could even be used for 
optimizing proxy implementations and for implementing 
connection-establishment functionality. Thus, it is 

probably best to consider association forwarding a 
protocol feature that application designers need to know 
about.  

5. Solutions 
This section suggests a variety of remedies to the 

security issues identified earlier in the paper. We hope that 
by this time at least some of the solutions have become 
apparent to the reader. Each suggested solution fixes a 
major vulnerability and, thus, prevents a large class of 
attacks. Therefore, we suggest implementing as many of 
them as one can without breaking compatibility with the 
current protocol specification. The designers of protocol 
extensions and future transport protocols should, of 
course, take all these lessons into account.  

5.1. Protecting old addresses 
In IPv6, it is possible to prevent an attacker from 

gaining the ownership of the old address of an honest 
endpoint. The Secure Neighbor Discovery (SEND) 
protocol [1] uses cryptographically generated addresses 
(CGA) [2], i.e., IPv6 addresses where some address bits 
encode a secure hash of the address owner’s public 
signature key. This makes it possible for anyone to verify 
the binding between the public key and the address 
without any security infrastructure. All address resolution 
messages on the local link are signed, which prevents the 
attacker from using some else’s address.  
Since the supply of IPv6 addresses is essentially 

unlimited, it is not necessary to reuse them. An access 
router that supports SEND will refuse to route packets to a 
node that tries to use someone else’s old address. For the 
details, we refer the reader to [1].  

Client A Server B
(Attacker) Server C

INIT(TagA,{AddrA}) INIT(TagA,{AddrB, AddrA})

TagC, 
COOKIE ECHO (CookieB)

TagC, 
COOKIE ECHO (CookieC)

TagA, INIT ACK (TagC,
CookieC,{AddrC})

TagA, INIT ACK (TagC,
CookieB,{AddrB, AddrC})

TagA, COOKIE ACK

TagC , DATA
TagA , DATA

TagA, COOKIE ACK
B becomes inactive

 Figure 5: Association forwarding 



In IPv4, there is no such elegant solution available. The 
best the access network can do is to avoid recycling 
addresses sooner than is absolutely necessary.  

5.2. Preventing address squatting 
There are several solutions for the address squatting 

attacks. The first possibility is to assign port numbers at 
the client end randomly rather than sequentially as in the 
current implementations. Random port numbers make it 
impossible for the attacker to guess which port number it 
should squat, unless it repeats the attack for all 216 of 
them. Randomizing the port numbers requires only a 
minor modification to the implementations.  
Another potential solution would be to relax the 

definitions of an endpoint and association so that multiple 
endpoints can use the same address. An endpoint could 
allow two of its peers to share a transport address and 
identify the association of a received packet based on not 
only the source and destination transport addresses but 
also the verification tag. The changes required to 
implementations would be rather complex but, like 
random port numbers, the changes could be deployed 
locally at each endpoint without breaking compatibility 
with existing implementations.  
Peer address verification, which will be explained in 

Section 5.5, can also prevent address squatting.  

5.3.  Encrypting cookies 
As is obvious from our earlier discussion, the state 

cookie should not be transferred in plaintext. In order to 
prevent attackers from using the cookie mechanism as an 
oracle to discover the verification tag values of an existing 
association, the cookie should be encrypted. This can be 
done conveniently with the same local key that is used for 
computing the MAC on the cookie.  
Encryption is, however, a relatively expensive 

cryptographic operation and it may not be suitable for all 
nodes. One alternative is to compute one-way hashes of 
the tie tags and to send them in the cookie instead of the 
plaintext values. Later, when the tie tag values are 
compared with other tags, the comparison can just as 
easily be done with hash values.  
An even simpler solution, designed by Stewart and 

Tüxen in reaction to an early version of this paper, is to 
replace the tie-tags with nonces that are sent in the cookie 
and stored in the existing TCB by the server.  

5.4. Secure acknowledgements 
SCTP acknowledgements, like all SCTP messages, can 

be spoofed if the attacker knows the recipient’s 
verification tag. The argument is that the verification tags 

are a reasonable trade-off between security and cost. 
However, it is possible to improve the robustness of the 
acknowledgements without resorting to expensive 
cryptography. The idea is to ensure that whoever sends an 
acknowledgement has really seen the data.  
In the secure acknowledgement scheme proposed by 

Savage at al. [17], every packet contains a nonce (i.e., an 
unpredictable random or pseudorandom number). The 
acknowledgement contains the sum (or exclusive or) of 
the nonces from all the received data packets. This idea is 
particularly easy to implement for cumulative 
acknowledgements but it is fairly efficient for selective 
ones as well. In order to spoof such acknowledgements, 
one needs to see every data packet. This would practically 
stop the bombing attacks because the attacker could not 
spoof the acknowledgements. Moreover, by requiring 
every SCTP packet to contain a cumulative 
acknowledgement (as in TCP), we can extend some 
spoofing protection from the acknowledgements to other 
messages. Unfortunately, replacing the acknowledgement 
scheme would require a major revision of the SCTP 
protocol and is perhaps an unrealistic plan.  

5.5. Peer address verification  
The bombing attack is possible because an endpoint 

simply believes the list of addresses it receives from the 
peer. This insight inspires another potential solution: an 
endpoint should verify that the peer addresses are active 
and that the nodes in these addresses want to receive data 
for the particular association. It should initially flag all the 
peer addresses as unverified and only clear the flags after 
it has polled each address and received a positive 
response.  
There are two ways to verify a peer address. First, the 

address that the peer uses during the handshake is 
automatically verified as soon as the peer returns the first 
packet with the correct verification tag. Second, the 
heartbeat protocol can be used to poll addresses. For this 
purpose, the heartbeats need to be implemented securely 
so that it is not possible to spoof acknowledgements. This 
can be achieved by including an unpredictable random or 
pseudorandom nonce in the sender-specific information of 
the heartbeat request.  
As long as a peer address remains unverified, the 

endpoint should not send data to the address or assume 
that it really belongs to the peer endpoint. Instead, it 
should allow an unverified address to appear in multiple 
endpoints. Once the address has been verified for one 
endpoint, it is safe to enter the slowstart phase for that 
address and to assume that any other endpoints claiming 
to have the same address are either mistaken or lying.  
If there are many peer addresses, verifying them may 

take a while because the SCTP specification allows 



sending only one heartbeat at a time. If at any time there 
are no active verified addresses available and data is 
waiting in the queue to be sent, the address verification 
can be optimized by bundling the heartbeat request, 
including the nonce, with the first data to the new 
transport address. The acknowledgements for the 
heartbeat and for the data can also be bundled in one 
packet. The result is very much like the secure 
acknowledgement scheme discussed in the previous 
section, except that it is used only for the first packet to 
the destination.  
The address verification is relatively straightforward to 

implement because the main component, the heartbeat 
mechanism for polling addresses, already exists. The 
hardest part is probably that the socket API will need to be 
modified to indicate the verification status of each 
address. At the time of writing, one implementation 
already included a nonce in the heartbeat messages. We 
also understand that there already was a plan to add an 
address verification mechanism, similar to the one 
described here, to the SCTP implementation guidelines. 

5.6. ICMP processing 
As an alternative to the address verification, the 

bombing attacks can be prevented by processing error 
messages correctly. For this to work, it is important that 
hosts, routers and firewalls send the ICMP error messages, 
which they currently do not always do. The failure to send 
the error messages makes them ideal targets for all kinds 
of packet flooding attacks. Non-SCTP hosts and firewalls 
might also consider implementing a minimal version of 
the protocol that sends ABORT chunks in response to all 
received SCTP packets. 
The obvious way to process a received ICMP error 

message is to treat it as an ABORT and to delete the 
association state. However, error messages sent by routers 
and firewalls often do not provide enough information to 
justify terminating the association and the only possible 
reaction is to merely increment an error counter. Also, it 
can be argued that dropping the entire association is too 
drastic a measure when an endpoint receives an ICMP 
error message, or even an ABORT, that was triggered by 
what the recipient thought was an out-of-the-blue packet. 
A more reasonable reaction might be to delete the address 
from which the error message was received.  

5.7. ASCONF authentication  
Although not yet published, the authors of the dynamic 

address reconfiguration specification [21] are planning to 
use unauthenticated key exchange to establish a session 
key at the start of an association. This key will then be 
used to authenticate ASCONF chunks. The idea in this 

kind of leap-of-faith authentication is that, if the attacker 
is not present at the time of the key exchange, it cannot 
later spoof messages. Although not strong authentication 
in the traditional sense, the solution provides a higher 
level of security than plaintext verification tags and 
prevents ASCONF spoofing. 

5.8. Strong end-to-end security 
For strong end-to-end security in SCTP, the choice is 

currently between running either IPSec under the transport 
layer [4] or TLS on top of it [12]. The advantage of IPSec 
in comparison to TLS is that it protects also the signaling 
chunks and not only user data. Thus, it can prevent most 
of the attacks described in this paper. The verification of 
peer addresses is still necessary, though, because IPSec 
cannot prevent the bombing attack. A disadvantage of 
relying on IPSec to prevent the other attacks is that it 
limits the applicability of the protocol to situations where 
the endpoints can authenticate each other. 
Both end-to-end security mechanisms need small 

modifications to work well with a transport protocol that 
supports multihoming. In IPSec, in order to avoid creating 
a separate security association between all pairs of 
addresses, it has been necessary to slightly modify the key 
exchange and the security association lookup. It is 
currently not clear how to cope with the dynamic address 
reconfiguration. TLS has also been adapted to work on top 
of SCTP.  

6. SCTP Implementations  
In order to check whether the vulnerabilities found in 

the SCTP specification exist in implementations, we 
reviewed the following three open-source 
implementations in October 2003:  
• SCTP user-level library implementation by Andreas 

Jungmaier et al., version sctplib-1.0.0 
• KAME snapshot of 2003-10-20 
• Linux kernel implementation, on kernel version 

2.5.67 
Based on the review, we believe that all these 

implementations contained all of the vulnerabilities 
discussed in this paper with the following exceptions: 
KAME processed correctly the ICMP Host Unreachable 
and Network Unreachable messages but not ICMP 
messages from a reachable host that does not support 
SCTP. KAME also sent a nonce in the first heartbeat to 
each destination address. 
At the time of preparation of the final version of this 

paper, most of the vulnerabilities in the KAME 
implementation have been fixed and we are working with 
the implementers on the remaining minor issues. 



7. Other protocols 
There are quite a few proposals for extending TCP to 

support multihoming and mobility. All the proposed TCP 
multihoming and mobility extensions take measures to 
prevent connection hijacking and data spoofing. These 
measures vary from unpredictable sequence numbers and 
nonces to strong cryptographic authentication. On the 
other hand, all the end-to-end TCP multihoming and 
mobility extensions that we have looked at are vulnerable 
to the bombing attack. 

Multi-homed TCP by Huitema [11] unifies 
multihoming, mobility and network renumbering support. 
The receiver of a packet identifies the connection based 
on a context identifier that is sent in a TCP option, rather 
than based on the source and destination addresses. 
Outgoing packets are sent to one or more addresses from 
which data has recently been received for the same 
connection. Huitema already identifies the threat of 
connection hijacking. The bombing attack is also possible 
because, by spoofing source addresses, an endpoint can 
trick its peer into sending all future packets to an arbitrary 
address.  

TCP-R by Funato et al. [10] implements mobility (but 
no multihoming) with TCP options. After a mobile host 
obtains a new address, it sends a redirect message to its 
correspondent. In the primary mode, the security is based 
on the TCP sequence numbers that must be in a certain 
range after the move. There is also a strongly 
authenticated mode. Nevertheless, there is nothing to stop 
an attacker from lying about its own location and spoofing 
acknowledgements in the bombing attack. 

TCP Migrate by Snoeren and Balakrishnan [19] is 
similar to TCP-R. Elaborate cryptography is used to 
prevent connection hijacking but bombing attacks are 
again possible.  

TCP Multi-Home Options by Matsumoto et al. [13] 
uses TCP options to implement full SCTP-like dynamic 
multi-addressing. Because of the similarity with SCTP, it 
suffers from all the vulnerabilities described in this paper 
and would benefit from the solutions we have proposed. 

MAST by Crocker [8] is a proposal to isolate dynamic 
multi-addressing into a separate layer that can be inserted 
under any transport protocol. Again, similarity with SCTP 
means that essentially all our attacks and defenses are 
relevant to MAST. 
It is our feeling that any protocol that supports 

multihoming or mobility with end-to-end signaling is 
potentially vulnerable to the bombing attack and should 
prevent it by verifying the peer addresses before using 
them. Mobility protocols based on directories and other 
infrastructure may also suffer from similar problems: 

Dynamic DNS [24][25] can be used as a location 
register for slowly-moving mobile nodes. While bombing 

attacks that exploit Dynamic DNS have not been 
documented, it is, at least in theory, possible to redirect 
data to a target by setting a DNS entry to point to the 
target IP address.  

8. Related work 
The protocols discussed in this paper are end-to-end 

protocols in the sense of Saltzer et al. [16]. That is, both 
signaling and data are sent between end nodes and the 
only function of the network is to route packets between 
them. In the proposed security solutions, we have 
followed the same principle. The alternative would be to 
build the security and mobility functions into the network 
architecture, for example, in the style of cellular phone 
networks or overlay networks. While this probably could 
solve most of the security issues discussed in this paper, 
such a solution would not be consistent with the Internet 
design philosophy. 

Mobile IPv6 is a network-layer mobility protocol that 
hides the address changes from the transport protocols. 
The bombing attack where the attacker gets a server to 
send a flow of packets to the target by lying about its own 
location was first recognized in Mobile IPv6 [3]. Similar 
to the bombing attack described in this paper, an attacker 
can start downloading a TCP stream and then trick the 
server into redirecting it to a target address. The attacker 
can also spoof TCP acknowledgements because it knows 
the initial sequence numbers. 
Mobile IPv6 solves the flooding problem with a 

mechanism called return routability. The server sends a 
nonce to the mobile’s new address to test whether the 
mobile really is there. This inspired our heartbeat-based 
solution for SCTP. The disadvantage of Mobile IPv6 is 
that since it is not a transport protocol, the nonce cannot 
be bundled with application data. Thus, our solution for 
SCTP can save one roundtrip in comparison to TCP over 
Mobile IPv6. 
Using addresses as identifiers for multihomed and 

mobile endpoints creates in inconsistency that is at least 
partly responsible for some of the attacks described in this 
paper. Chiappa [6] proposed the decoupling of endpoint 
names and network addresses. This would probably be a 
good starting point if we wanted to design a new transport 
protocol. 

The Host Identity Payload (HIP) protocol unifies 
mobility, multihoming and security into a new protocol 
layer between the network and transport layers [14]. One 
of the fundamental ideas of HIP is to define a separate 
namespace for endpoint identifiers and to map them 
securely onto network addresses. HIP now incorporates 
the return routability test for verifying peer addresses. 
Because of the emphasis on endpoints, one could argue 
that HIP is a transport-oriented protocol. 



The Real-Time Transport Protocol (RTP) is used for 
transmitting audio and video streams over the Internet. 
Rosenberg [15] explains how SIP and other session-
establishment protocols can be used to direct RTP streams 
to a flooding target. If we abstract away the cumbersome 
details of the solution proposed in [15], the idea is similar 
to our peer-address verification. The proposal also suffers 
from the same connection-forwarding problem as SCTP.  
We already mentioned the work of Savage et al. [17] 

on TCP acknowledgements. The attacks we are trying to 
prevent are slightly different; SCTP was already designed 
with the TCP ACK-splitting attack in mind. Nevertheless, 
the same secure acknowledgement scheme works well to 
prevent the spoofing of SCTP acknowledgements. With 
secure acknowledgements, we would not even need to 
send a heartbeat request to verify the peer address. The 
first secure acknowledgement would have the same effect 
as a secure heartbeat. SCTP, in fact, almost does the right 
thing because, unlike TCP mobility solutions, it maintains 
a different congestion window for each peer address. 

9. Conclusion 
Adding multihoming and mobility support to Internet 

transport protocols changes the environment in which 
transport-layer security mechanisms operate. This may 
cause non-cryptographic security mechanisms, such as 
TCP sequence numbers and SCTP verification tags, to 
break. The attacker may be able to spoof data and 
signaling messages and hijack connections. Dynamic 
multi-addressing also gives raise to new types of attacks 
such as address squatting, redirection of data from a server 

to the target of a bombing attack, and connection 
forwarding. In this paper, we describe a number of such 
attacks against SCTP and suggest low-cost changes to the 
protocol specification and implementations. Several SCTP 
implementations were found to be vulnerable to all or 
most of the attacks described in this paper. Table 1 
summarizes the main protocol weaknesses, attacks and 
solutions and how they relate to each other. (Some attacks 
depend on multiple vulnerabilities, which is indicated by 
multiple crosses in the column. We have also marked the 
changes that should be made immediately to the 
implementations.) The lessons from our security analysis 
apply to other transport protocols and to practically any 
multihoming or mobility solution that uses end-to-end 
signaling. 
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Protocol Weakness Solution
Spoofing a single packet possible X Leap-of-faith authentication for ASCONF

Plaintext cookie X Encrypt cookies or replace tie-tags with nonces X
Dynamic topology exposes tags X X Secure acknowledgements

Attacker is the new address owner X Secure neighbor discovery
Unverified peer addresses X X Peer address verification with secure heartbeats X

ICMP error messages ignored X Implement ICMP error processing X
Endpoints cannot share addresses X Randomize initiator port number or redefine endpoint X

Proxying possible X Understand and use with care

Implement 
immediately

 
Table 1: Main weaknesses, attacks and solutions 
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