
Effects of Mobility and Multihoming on Transport-Protocol Security
Tuomas Aura

Microsoft Research, Cambridge, UK
tuomaura@microsoft.com

Pekka Nikander and Gonzalo Camarillo
Ericsson Research, Jorvas, Finland
Pekka.Nikander@ericsson.com

Gonzalo.Camarillo@ericsson.com

Abstract

The Stream Control Transmission Protocol (SCTP) is a

reliable message-based transport protocol developed by
the IETF that could replace TCP in some applications.
SCTP allows endpoints to have multiple IP addresses for
the purposes of fault tolerance. There is on-going work to
extend the SCTP multihoming functions to support
dynamic addressing and endpoint mobility. This paper
explains how the multihoming and mobility features can
be exploited for denial-of-service attacks, connection
hijacking, and packet flooding. We propose
implementation guidelines for SCTP and changes to the
mobility extensions that prevent most of the attacks. The
same lessons apply to multihomed TCP variants and other
transport-layer protocols that incorporate some flavor of
dynamic addressing.

1. Introduction
In this paper, we discuss the effects of mobility and

multihoming on the threat models and security
mechanisms used in designing transport-layer protocols.
We focus on the Stream Control Transmission Protocol
(SCTP) because it incorporates multihoming support and
there are proposals for extending the protocol towards
transport-layer mobility. Besides SCTP, the lessons from
our security analysis apply to all transport-layer protocols
that support multihoming or mobility with end-to-end
signaling.
Security is not the first goal we tend to associate with

the transport layer. Nevertheless, transport protocols
incorporate many features that have been designed with
security in mind. The purpose of these features is to
prevent spoofing of data and hijacking of connections and
to mitigate denial-of-service threats. The best-known
example is the TCP sequence numbers, which are
initialized to an unpredictable random value in order to
make packet spoofing more difficult. Another example is
the congestion control and acknowledgement mechanisms

that limit the number of packets sent into the network.
Although these features were not originally introduced to
prevent malicious behavior, their significance to security
is now widely acknowledged. New transport protocols,
such as SCTP, make security an explicit design objective.
When a mobile Internet host changes its location and

its point of access to the internet changes, its IP address
typically changes. The aim of mobility protocols is to
solve the following two problems: to enable continuous
communication over address changes, and to provide a
reachability mechanism whenever the mobile is connected
to the Internet. Mobility solutions exist for all major
protocol layers. Link-layer mobility protocols avoid IP
address changes. Network-layer protocols (e.g., Mobile
IP) hide them from the layers above. Transport-layer
mobility protocols – the topic of this paper – maintain a
continuous connection between two endpoints over
address changes. Higher, session and application-layer
solutions re-establish transport-layer connections after an
address change. All these solutions have their advantages
and disadvantages. Transport-oriented approaches to
mobility and end-to-end security are in some ways natural
because this is the first layer in the stack where we can
differentiate communication endpoints from addresses.
Moreover, the transport-layer controls data flows and,
thus, is instrumental in preventing some packet-flooding
attacks.
A multihomed Internet host has multiple IP addresses.

While the goal of mobility protocols is to enable
communication for moving hosts, the aim of multihoming
is typically to increase reliability in a static setting. When
one address fails, communication is switched to another
one. However, despite their different goals, mobility and
multihoming can be seen as two flavors of the same
phenomenon: dynamic multi-addressing. That is, a
multihomed or mobile endpoint has a set of IP addresses
that changes dynamically. In this paper, we are interested
in the whole spectrum of such behavior.
Multihoming and mobility affect the security of

transport protocols in several ways. First, existing security
mechanisms are often based on implicit assumptions of a

static network topology and unchanging addresses. When
the assumptions are invalidated, the existing security
mechanisms may become ineffective. Second, it is
possible to misuse mobility signaling. Potential attacks
include denial of service by preventing legitimate
communication, connection hijacking, spoofing and
intercepting data, and redirecting packet flows to the
target of a flooding attack. We found such security issues
in SCTP and in several other transport-layer protocols that
support multihoming or mobility. Fortunately, it turns out
that the vulnerabilities can be remedied with relatively
small changes to the transport-protocol specifications and
implementations.
In addition to reviewing protocol specifications for

vulnerabilities, we looked at three open-source SCTP
implementations to check that the attack scenarios
described in this paper are realistic. It should be noted that
the paper describes the specifications and implementations
as they were at the time of writing. The SCTP
implementation guidelines and major implementations
have since been updated to reflect many of our discoveries
and we believe that the remaining issues can be solved
satisfactorily.
We only briefly mention strong end-to-end protection

of user data in this paper. SCTP and TCP are both
vulnerable to man-in-the-middle attacks where the
attacker is on the path between the endpoints. The security
mechanisms commonly used in transport protocols are
relatively weak, similar to the random initial sequence
numbers in TCP. In general-purpose transport-layer
protocols, such weak mechanisms are preferable to
expensive cryptographic operations and reliance on a
security infrastructure. The focus of this paper is on the
changes that are needed to the weak security mechanisms
when the transport protocols support multihoming and
mobility.

The rest of the paper is organized as follows. We first
describe SCTP in Section 2. Section 3 discusses security-
critical assumptions that are invalidated or weakened by
the introduction of general-purpose multihoming and
mobility. Section 4 covers the details of some interesting
attacks that arise from the invalid assumptions. Section 5
suggests low-cost modifications to the SCTP protocol and
Section 6 mentions some implementations. In Section 7,
we briefly examine similar security issues in other
transport-layer protocols that support dynamic addressing.
Section 8 surveys related work and Section 9 concludes
the paper.

2. SCTP protocol
The Stream Control Transmission Protocol (SCTP)

[23] is a standard transport-layer protocol for the IPv4 and
IPv6 Internet. SCTP was originally intended for the
transport of PSTN telephony signaling messages over IP
but it is now specified as a general-purpose alternative to
TCP and UDP. The general applicability implies that any
security mechanisms in the protocol will have to work
correctly in a much wider range of settings than just
telephony signaling.
The designers of SCTP have carefully considered past

lessons on transport-protocol security. For example, the
security function of TCP sequence numbers has been
factored into a separate mechanism and the respondent
remains stateless during the handshake in order to prevent
state-exhaustion attacks. However, the design of Internet
mobility protocols has brought attention to some new
types of denial-of-service attacks that were not known or
fully appreciated during the SCTP design process. It is
important to prevent these attacks because, in some cases,
not only the SCTP endpoints but also third parties may be
exposed to denial-of-service.

Endpoint A Endpoint B

INIT(TagA,{AddrA1,AddrA2})
TagA, INIT ACK (TagB,
CookieB,{AddrB1,AddrB2})

TagA, COOKIE ACK

TagA, ACK, DATA

Association
establishedAssociation

established

Stateless
TagB, COOKIE ECHO (CookieB)

TagB, DATA

Figure 1: SCTP handshake

This section describes SCTP with focus on features
that are relevant to the following discussion on its
security. For a complete description of SCTP, we refer the
reader either to the protocol specification [23] or to the
book by Stewart and Xie [22].

2.1. Protocol basics
An SCTP association is a relationship between two

SCTP endpoints. An endpoint is a set of transport
addresses and a transport address consists of a network-
layer address and a port number. In SCTP, all transport
addresses of an endpoint must share the same port
number. Thus, in practice, an SCTP endpoint is identified
with a non-empty set of IP addresses and a single port
number. For the purposes of this paper, a pair of transport
addresses is called a path. Each transport address can
belong to only one endpoint at a time. This means that no
special endpoint identifiers are needed. The receiver of an
SCTP packet identifies the source and destination
endpoints and the association to which the packet belongs
based on the source and destination IP addresses and port
numbers.
An SCTP packet comprises a common header and zero

or more chunks. The chunks may carry either SCTP
signaling information or user data (DATA chunk).
Multiple chunks, such as data and acknowledgements,
may be bundled into one packet. SCTP provides ordered
and reliable multi-stream transport but this is largely
irrelevant to our discussion and we skip the details.
Figure 1 shows the messages sent during a typical

SCTP association setup, which is a 4-way handshake. The
messages in the figure are identified by the names of the
signaling chunks that they contain. Although not shown in
the figure, user data can be bundled into the third and
fourth messages of the handshake, thus saving one round
trip.

2.2. Verification tags
In the two first messages of the handshake, the

endpoints exchange random 32-bit nonces. The header of
all but the first packet from Endpoint A to B must include
B’s nonce. Correspondingly, B must include A’s nonce in
the header of all packet that it sends to A. The SCTP
specification calls the nonces verification tags (denoted by
TagA and TagB in Figure 1.)
The verification tags serve the same security purpose

as the randomly initialized sequence numbers in TCP.
That is, they provide a level of security against packet
spoofing. In SCTP, the security function and the sequence
numbers have been factored into separate mechanisms.
Obviously, the verification tags are not a very strong
security mechanism. Any node that sees packets

belonging to the association learns the verification tag
values and can consequently spoof packets for that
association.

2.3. Multi-homing and failover
During the SCTP handshake, each of the two endpoints

may send to the other a list of IP addresses (in the INIT
and INIT ACK chunks). Each endpoint selects one of the
peer’s addresses as the primary destination address, and
one of it owns addresses as the best source address for
routing packets to the destination. If the choice is not
mandated by the upper-layer protocol, the algorithm for
choosing the destination address is implementation
dependent. The typical choice is either the source address
of the first received packet or the first address in the
peer’s list.
Each endpoint sends all packets from the chosen source

address to the primary destination address. The other
addresses are used only if the primary path fails, i.e., if the
primary destination address becomes unreachable. The
policy for selecting the new address pair in failover is
implementation dependent.
Each endpoint monitors the reachability of the

secondary addresses of its peer so that it always knows
which addresses are available for the failover. The
monitoring is done by sending a heartbeat request (a
HEARTBEAT chunk) to an idle destination address,
which the peer acknowledges. The default frequency for
the heartbeats is every 30 seconds. The implementation
may start sending heartbeat requests immediately after the
association has been established but it is not required to do
so.
The heartbeat request contains a field for sender-

specific information, which the peer will copy verbatim to
the heartbeat acknowledgement. The exact contents of this
field are not specified but the SCTP specification suggests
including the destination address and a timestamp. The
idea is that the requester can process the
acknowledgements without storing the details of each
individual heartbeat request it has sent.

2.4. State cookie
An important feature of the SCTP handshake is that the

respondent (Endpoint B) remains stateless between
sending the second and receiving the third message. The
respondent encodes the protocol state, including the
contents of the INIT, into a state cookie, which it sends to
the initiator (Endpoint A) in the INIT ACK. The initiator
returns the cookie to the respondent in the COOKIE
ECHO. This prevents state-exhaustion attacks similar to
the TCP SYN flooding [18].

The SCTP specification gives some guidelines on what
data should go into the state cookie but the exact format of
the cookie depends on the respondent implementation.
The respondent must protect the integrity of the cookie
with a message authentication code (MAC). No key
distribution is needed because the respondent both creates
and verifies the MAC with a local secret key that it never
reveals to anyone else. The cookie also contains a
timestamp to limit replays.
If an endpoint receives an INIT chunk from a peer with

which it already has an association state, it needs to
distinguish between several possible causes. The
verification tags have a special role in accomplishing that.
The two endpoints may have initiated the association
simultaneously, thus causing a handshake collision, or the
peer may have been restarted and is trying to re-establish
the association. Moreover, messages can be duplicated,
reordered, delayed, or lost. In order to determine which of
the various complex scenarios occurred, the endpoint that
responds to the unexpected INIT includes the verification
tags of the existing association in the state cookie, where
they are called tie tags. This helps it to decide how to
proceed after receiving the third message.

2.5. Acknowledgements
SCTP acknowledgements combine both selective and

cumulative information but we only need to consider the
latter. The acknowledgements contain a cumulative
sequence number for the received data in which no gaps
remain. Like TCP, an SCTP endpoint maintains
congestion windows that limit the amount of
unacknowledged data that may be in flight at a time.
There is a separate window for each transport address of
the peer endpoint. The window size is calculated with a
TCP-like algorithm that includes slowstart and
congestion-avoidance phases, and is limited by the
receiver’s advertised buffer space.
An interesting piece of information for our discussion

is that the receiver can, with one cumulative
acknowledgement, acknowledge all the outstanding
packets in the congestion window. Thus, a receiver that is
willing to break the protocol rules can maintain a data
flow by sending only one cumulative acknowledgement
for each congestion-window-size block of data. On the
other hand, SCTP protects against the ACK-splitting and
optimistic-ACKing attacks outlined by Savage et al. [17].
The receiver needs to acknowledge individual packets in
order to accelerate the sending rate.

2.6. ABORT and ICMP error messages
The SCTP specification defines the ABORT chunk for

closing an association in an error situation. For example,

an endpoint sends an ABORT when it receives an out-of-
the-blue packet, i.e., one that does not match any existing
association. This causes the receiver of the ABORT to
delete its association state.
It is clearly important to prevent the spoofing of

ABORT messages but the end endpoint that receives an
out-of-the-blue packet has no matching association state
and does not know what the peer’s verification tag is
supposed to be. SCTP solves this dilemma by using the
verification tag from the out-of-the-blue packet instead.
The tag proves that the sender of the ABORT has at least
seen a packet that belongs to the association.
The abort mechanism is, of course, used only by nodes

that support the SCTP protocol. When a non-SCTP node
receives an out-of-the-blue SCTP packet, it either sends
an Internet Control Message Protocol (ICMP) error
message or it silently discards the packet. The possible
ICMP messages are “Destination unreachable” and
“Unknown next header type” (the latter in IPv6). Spoofing
of ICMP error messages is prevented in way similar to the
ABORT. The sender of an ICMP message copies some
bytes from the beginning of the violating packet,
including the verification tag, to the error message. The
SCTP specification does not say how an endpoint should
react to a received ICMP error message.

2.7. Dynamic address reconfiguration
Standard SCTP supports multihoming with a static set

of addresses. We will now look at a proposed SCTP
extension, dynamic address reconfiguration [21], which
enables dynamic multi-addressing. It is worth
remembering that this extension is work in progress and
the correct forum for discussing its details is the relevant
IETF working group. The proposal was originally
intended for infrequent address changes, such as network
renumbering, but there have been many ideas on using it
as a mobility mechanism [7][9][26]. In this paper, we will
focus on the general lessons that can be learned about the
security of transport-layer mobility.
The proposal defines a new SCTP chunk type

ASCONF. An endpoint uses the ASCONF chunk to notify
its peer about changes to its address set. The chunk
contains one or more instructions for adding and deleting
addresses and for setting the primary address. The
recipient executes these instructions in the order in which
they appear in the chunk. It is easy to see how such
instructions can be used to implement a location update:
add the new address, set it as the primary address, and
delete the old address. (See the right-hand side of Figure 3
for an example.)

3. Assumptions invalidated by mobility
In this section, we consider several implicit

assumptions that were made in the design of the SCTP
protocol. Most of these assumptions are entirely
reasonable if the protocol is used for its original purpose,
i.e., for telephony signaling. We show that they are not
necessarily true when SCTP is used as a general-purpose
transport protocol for multihomed or mobile endpoints.

3.1. Static vs. dynamic network topology
As we already mentioned, if an attacker sees SCTP

packets belonging to an association and learns the
verification tags, it can spoof packets for the same
association. To be able to spoof packets in both directions,
the attacker needs to see one packet in each direction
(unless it sees the INIT ACK). This weakness is usually
considered acceptable because the set of nodes on a path
between two transport addresses and, consequently, the
number of potential attackers that can see the tags is
relatively small.
Multihomed endpoints, however, have several possible

paths between them, which may all be tested when
recovering from a path failure. The SCTP specification
encourages trying all different source-destination address
pairs. If this is implemented, the number of potential paths
grows quadratically with the number of addresses per
endpoint. Thus, the number of network nodes that can
sniff the verification tags may increase rapidly with the
number of secondary addresses and with the frequency of
communications or endpoint failures.
The situation becomes even worse if the endpoints are

mobile and use dynamic address reconfiguration. Anyone
along any past path between the endpoints may have seen
the verification tags. Moreover, mobile endpoints are
often located in wireless networks, which due to their
broadcast nature expose the packets to sniffing. Thus, the
assumption that the tags will only be seen by a small fixed
set of nodes no longer holds. On the contrary, the longer
the association lifetime and the more often the mobile
moves, the larger group of nodes that have an opportunity
to sniff the tags.
The general lesson on transport-layer security is that

plaintext secrets (verification tags, secret sequence
numbers, nonces, etc.) that can be used in more than one
message are more vulnerable with multihomed or mobile
endpoints than in a static setting. They may still be
acceptable as security mechanisms if the rate of change is
slow and connection lifetimes limited.

3.2. Faith of old addresses
Another assumption made in the standard SCTP

protocol is that the transport addresses belong to the
association endpoints until the end of the association
lifetime. The danger of this assumption is that if the
endpoint loses control of an address and the address is
subsequently allocated to another node, the peer will
continue to send packets (such as heartbeat requests) to
the lost address. The new owner of the address will
receive the packets and learn the verification tags in them.
If the new owner of the address is malicious, it may use
this information for spoofing attacks.
In the currently typical SCTP applications, such as

telephony signaling, the risk of attacks caused by this
vulnerability is small. Multihomed SCTP endpoints
usually do their best to ensure that they retain all their
addresses throughout the association lifetime, for
example, by using only statically configured IP addresses.
On the other hand, when the dynamic-address-
reconfiguration mechanism is used for mobility, it
becomes normal for an endpoint to leave an address.
While the mobile endpoint will send delete-address
instructions to its peers, some packets will usually be in
flight when the address change occurs and may end up at
a new owner of the address.
The general lesson for mobility-protocol design is that

we should consider what happens to the old addresses of
the mobile node, and the possibility that an attacker gains
control of one.

3.3. Who ate the cookie
There is one peculiar feature in the SCTP protocol that

makes it particularly dangerous for an endpoint to lose an
IP address to an attacker. One might think that the attacker
cannot do anything because it does not know the
verification tags for the association, but that is not true.
Recall that the state cookie in the second message of the
handshake (INIT ACK) contains the verification tags of
any existing association between the same endpoints. The
attacker can use the state-cookie mechanism as an oracle
to discover both verification tags of the association whose
address it controls.
The attacker starts by sending an INIT to the peer

endpoint using the same IP address and port number as in
the existing association. (It does not need to list any
secondary addresses.) The peer automatically responds
with an INIT-ACK that contains a state cookie. Inside the
state cookie, the attacker finds both verification tags. The
location of the tags in the cookie depends on the peer-
endpoint implementation but it is not hard to guess.
The worst part is that the attacker usually does not need

to know the correct port number, the peer’s address, or

even that the association exists. This is because the arrival
of any packet belonging to the association (such as a
heartbeat request) alerts the new address owner to the
opportunity for misuse. A single packet also provides all
the necessary information for the above attack.
The conclusion we draw from this section is that it is

dangerous to trust secrets to a peer that has just exhibited
symptoms of a failure, even though it may be tempting to
do so in the hope of a quick recovery.

3.4. Correctness of the address sets
In a telephone signaling system, it is reasonable to

assume that the endpoints know their own addresses and
even each other’s address sets. They can also be trusted to
give each other correct information about their secondary
addresses in the handshake messages. The heartbeat
mechanisms is used to monitor the peer addresses but its
purpose is to discover which addresses are currently
reachable, not to cast any doubt on whether the addresses
were correct to begin with.
In a general-purpose multihoming protocol, on the

other hand, we need to prepare for the possibility that the
endpoints sometimes make mistakes about their address
sets and even purposely misrepresent them. Moreover, we
cannot expect there to be any application-level
verification or recovery mechanism that would mitigate
the consequences of such false information. Thus, when
SCTP is used as a general-purpose transport protocol, we
need to worry about attacks where the endpoints lie about
their addresses.
This concern about the correctness of the peer’s

addresses is not specific to SCTP. In any multihoming or
mobility protocol, we need to consider the possibility of
an endpoint making false claims about its addresses.

3.5. Address ownership
Two SCTP endpoints are not supposed to share the

same transport address, i.e., the same IP address and port
number. The original SCTP specification does not define
how an endpoint should react if two of its peers have a
common transport address. However, there is an
implementation guideline [20] for rejecting INIT packets
that do not match any existing association but contain an
address that is already used in one. This prevents
situations where two endpoints share a transport address.
To be precise, the guideline says that if an endpoint

receives an INIT that otherwise matches an existing
association but has new addresses added to it, the endpoint
receiving the INIT will respond with an ABORT, instead
of the usual INIT ACK. The reason for issuing this
guideline was that early SCTP implementations were
vulnerable to an address-injection attack: when they

received an INIT chunk that matched an existing
association but contained an additional secondary address,
the implementations processed the INIT as an indication
of a peer restart and added the new address to the re-
established association.
Following the guideline effectively means that the first

peer to start using a transport address as either a primary
or as a secondary address gets the priority to it. Any later
claims by others to the same address are treated as errors.
An address conflict in a telephony signaling protocol is

probably an operator error and it is best to report the error
and let the operator resolve it. The situation changes when
we consider a general-purpose transport protocol. There
may not be any operator that could help. Thus, it is
essential to either avoid the conflicts or to resolve them
automatically in a fair way.

3.6. Value of spoofing a single packet
SCTP prevents packet spoofing with the 32-bit

verification tags. Nodes that want to spoof packets for an
association must either be on the path between the
association endpoints or guess the verification tag value. It
is obvious that the 32 secret bits are not sufficient to
prevent an off-path attacker from occasionally guessing
the right value and succeeding to spoof a single packet. If
the attacker knows the right port numbers and sends 232
packets to the attack target, one of them will have the
correct verification tag and will be accepted.
The SCTP designers have reasonably decided that such

a brute-force attack is not a major threat. First, it requires
huge effort on the attacker’s part to spoof a packet.
Second, the benefit is limited to spoofing a single packet.
In order to spoof a second packet, the attacker needs to
repeat the effort. Probably the best option for the attacker
is to send ABORT chunks and try to terminate the
association for denial of service. Experience from the TCP
protocol, where Reset packets can be similarly spoofed,
shows that this kind of attacks are not a major threat in
practice.
Dynamic address reconfiguration changes the situation

considerably. If the attacker manages to spoof an
ASCONF chunk, it can add its own address to the peer
endpoint and set it as the primary address. While the
attack still requires in the order of 232 packets
(approximately 200 gigabytes in IPv4) to succeed, the
reward is the complete control over the association. Thus,
the brute-force attack has become much more attractive.
With the current network technology, the attack is feasible
only if the attacker has a particularly high-bandwidth
connection to the target but this may change as the
Internet bandwidth grows. Fortunately, the authors of [21]
have been aware of the dangers and are working on a
stronger ASCONF authentication mechanism.

In any protocol with dynamic addressing, it is
important to consider the possibility of spoofed signaling
messages as well as spoofed data. The cost-benefit trade-
offs may be quite different for different types of messages
and the addition of new signals may render existing
protection insufficient.

3.7. Importance of error messages
The SCTP specification defines clear rules for sending

an ABORT in response to out-of-the-blue packets and for
processing the ABORT. Non-SCTP nodes should respond
to an out-of-the-blue SCTP packet by sending an ICMP
error message, either “Destination unreachable – protocol
unreachable” in IPv4 or “Parameter problem -
unrecognized next header type” in IPv6. Like ABORT,
these error messages indicate that the recipient did not
want to receive the packet. Firewalls and routers may also
respond with ICMP “Destination unreachable”, which
sometimes signals unwillingness to receive SCTP packets.
It is surprising that the SCTP specification does not
mention the issue of processing ICMP error messages.
Implementations at the time of writing this paper were

not much better. Two of the implementations that we
reviewed (see Section 6) ignore all the critical ICMP
messages and one processes only some of them. This is
probably an attitude inherited from TCP implementations,
which often treat ICMP messages in the same way.
The difference between TCP and SCTP is, however,

that multihoming makes the error messages much more
important. It can, for example, happen that an endpoint
loses control of a secondary address and that a new owner
of the address wants to stop packets being sent to it. With
the dynamic address reconfiguration and mobile
endpoints, it is even more likely that packets end up being
sent to a wrong address. If the sender of the offending data
takes no notice of the error messages, the recipient has no
way of defending itself. The same, of course, applies to

any transport protocol with multihoming and mobility
support.

4. Redirection attacks
This section describes complete attack scenarios

against SCTP, which all depend on one or more of the
protocol weaknesses discovered in Section 3. The attacker
can prevent communication between honest endpoints by
squatting their addresses, hijack an association without
being on the route between the endpoints, trick a server to
flood a target address with data, and forward associations
in an unexpected way. Obviously, the more full-featured
the mobility protocol is, the more flexibility the attacker
has. Nevertheless, we will see that even static
multihoming may make a transport protocol vulnerable to
some attacks.

4.1. Address squatting
The way SCTP resolves address conflicts, i.e.,

situations where two endpoints share an address, can be
exploited in a denial-of-service attack. That is, an attacker
can “squat” addresses. Consider the scenario in Figure 2.
Two honest endpoints B and C try to communicate while
the attacker A wants to prevent them. If the attacker
knows the transport address of C, it can create an
association with B using the same port number and
include one of C’s addresses as a secondary address in its
own address list. When C tries to create an association
with B, there will be an address conflict between the two
associations (A-B and C-B). B will reject the INIT from C
and respond with an ABORT. Thus, C will fail to
establish an association with B.
In order for the above attack to succeed, the attacker

needs to know or guess which port number C will use
when connecting to B. This attack works particularly well
against applications like telephony signaling where the

Client A
Attacker Server B Client C

INIT(… {AddrA, AddrC})

ABORT
Potential attack

detected
INIT(… {AddrC, Addr D})

Hanshake failed

Complete
handshake

Figure 2: Address squatting

port numbers for both endpoints of an association are
often fixed and well known. In other applications, the
attack is slightly more difficult to execute because the
attacker will either have to squat all 216 port numbers or it
has to guess which numbers are more likely. The guessing
is not as difficult as it may appear because current
implementations typically allocate port numbers
sequentially. The effectiveness of the attack also depends
on the timing of heartbeat requests, which varies between
implementations. If B sends a heartbeat request to the
squatted address, it will receive an ABORT from A,
which will terminate the squatter’s association.
The address-squatting attack is perhaps the most

serious threat that we discovered against the standard
SCTP protocol when used for its original application. It
could lead to serious denial-of-service issues when SCTP
is used for transporting telephony signaling over the
public Internet.

4.2. Association hijacking
An attacker that is permanently on the route between

the two endpoints can mount a man-in-the-middle attack
and hijack the entire association. Like the SCTP
designers, we accept that unless a strong end-to-end
security mechanism is used, we cannot solve this problem.
Instead, we are interested in stopping attackers that only
temporarily or accidentally see packets belonging to the
association.
In Sections 3.1-3.3, we explained several ways in

which mobility and a carelessly designed state-cookie
mechanism make it more likely that an attacker learns the
verification tag values. In this section, we will consider
the consequences of such a compromise if the endpoints
support dynamic address reconfiguration.

Figure 3 shows a worst-case scenario that combines
several of the vulnerabilities discussed in Section 3. An
attacker C is the new owner of an IP address from which a
mobile endpoint A has just moved away. The attacker also
has a second IP address AddrC. The attack is triggered
when the attacker receives a packet that belongs to the A-
B association. The attacker uses B and the state cookie
mechanism as an oracle to discover the verification tags of
the A-B association. The attacker then sends an ASCONF
chunk to B in order to add its other address AddrC to the
association. The ASCONF from the attacker arrives at B
before the one from the mobile endpoint A does so that B
still accepts packets from A’s old address. Later, the
attacker sets this address as the primary address. As a
result, the attacker has managed to hijack the association
from the mobile endpoint A.
Admittedly, this attack depends on a number of

assumptions and on unfortunate timing of the events.
Experience from security protocol design shows, however,
that attacks that initially appear theoretical may, in the
right circumstances, become practical.

4.3. Bombing attack
The idea in the bombing attack is that the attacker

redirects a data flow to a target node in order to flood it
with packets. In order for the attack to make sense, the
attacker must get someone else to send the packets, and
the number of packets arriving at the target must be larger
than the number of packets sent by the attacker. Even a
relatively small amplification factor can have serious
consequences if it is used in connection with a distributed
denial-of-service attack. In this section, we explain how
SCTP multihoming and mobility can be exploited in such

Attacker C
at OldAddrA/AddrC Endpoint B

INIT(...,{OldAddrA})

TagB, ASCONF(add AddrC)

... CookieB(TagA,TagB) ...

TagA,DATAPacket to A
arrives at
OldAddrA Attacker uses B

as oracle to
discover tags

Endpoint A
at NewAddrA

TagB, ASCONF(set primary AddrC)

TagB,ASCONF
(add NewAddrA,

set primary NewAddrA,
delete OldAddrA)

Figure 3: Association hijacking

attacks if SCTP is used as a general-purpose transport
protocol.
As shown in Figure 4, an attacker A starts by creating

an association with a public server B, such as a web server
that supports SCTP. In its own list of addresses in the
INIT chunk, the attacker includes both its own IP address
and the IP address of the target C. The attacker then starts
downloading a data stream, such as a large data file, from
the server. Immediately thereafter, the attacker stops
sending any packets, including acknowledgements. This
causes the server to switch to using the target address as
the primary address. As a result, the data flow from the
server will be redirected to the target. Note that the
failover needs to happen before the server sends the first
heartbeat request to the target address.
The next step is to spoof acknowledgements from the

target C to the server B. The attacker can do this because
it knows the verification tag values. In order to accelerate
the rate at which the server sends data to the target, the
attacker should spoof an acknowledgement for each data
packet. After the initial acceleration, the attacker only
needs to send one acknowledgement per congestion
window in order to sustain the data flow. The attacker will
have to guess or measure the maximum sustainable rate at
which the server can send data so that it knows when to
stop accelerating the data flow and does not get ahead in
the acknowledgements.
As described above, the bombing attack works with

standard SCTP multihoming. The same attack can be
executed more effectively with the dynamic address
reconfiguration functions. The attacker does not need to
wait for the server to switch to the target address after a
timeout. Instead, it can immediately set the target address
as the primary address.

There is one major limitation to the above attack. As
explained in Section 2.6, a target that supports the SCTP
protocol will respond with an ABORT and the server will
stop sending data. This means that the target has to be a
non-SCTP node or a non-existent address, in which case
the real target is the router towards the network of that
address. The non-SCTP nodes and routers may respond
with ICMP error messages but the current SCTP
implementations typically ignore them.
The bombing attack is attractive for the attacker

because it can direct a large data flow from the server to
the target while only sending and receiving a few
messages itself. The attacker does not even need to spoof
the source IP address of the acknowledgements as it is
legal for them to come from a secondary address. The
attack is more damaging if several data streams are
redirected to the same host or router.

4.4. Association forwarding
This section describes an unexpected feature of the

SCTP multihoming: association forwarding. Invoking this
feature does not constitute an attack in itself but we
conjuncture that, if not well understood by application
designers, it could be exploited as a building block in
application-level attacks.
Like in any other transport protocol, a node can act as a

proxy between two SCTP endpoints. The proxy acts as a
server for a client and as a client for a server and forwards
upper-layer data between the two. Assume, as in Figure 5,
that endpoint A initiates a connection with endpoint B. B
can (with or without A’s knowing) open an association to
another server C and act as a proxy between A and C.

Client A
Attacker Public Server B Address C

 Target
INIT(TagA,{AddrA,AddrC})

TagA, ACK, DATA

TagA, DATA
Failover to Addr C, Slowstart

TagB, ACK

Ignored
TagB, DATA(HTTP Request)

Complete
handshake

Non-SCTP host
TagA, INIT ACK(TagB,{AddrB})

Figure 4: Bombing attack exploiting static multihoming

Whether this behavior is desirable depends on the
application requirements.
In SCTP, the proxy can go one step further: it can

remove itself from the middle and let A communicate
directly with C. B uses two tricks to achieve this. The first
trick is to use the same port numbers and verification tags
for both associations (A-B and B-C). B waits for
connections at the same well-known port number as C.
When B receives an INIT from A, B copies A’s port
number and tag to its own INIT to C. After receiving the
INIT ACK from C, B copies C’s tag to its own INIT ACK
to A. As a result, both associations use the same pair of
port numbers and the same pair of verification tags. The
second trick is to switch over to the direct path A-C. In its
INIT chunk to C, B includes A’s transport address as a
secondary address. In the INIT ACK to A, B includes C’s
transport address as a secondary address. After the
handshake, B stops responding to A’s and C’s packets.
This causes A and C to switch to communicating directly.
B will not receive any further packets, except occasional
heartbeat requests, which it can ignore. There is also a
variation of this scenario where the server connects two
simultaneously connecting clients to each other and
removes itself from the middle. The dynamic address
reconfiguration functions would, of course, make the
switching to direct communication faster.
It is not clear how serious this kind of association

forwarding is. On one hand, it is unexpected and
potentially unwanted behavior. The attacker could, for
example, continue to insert occasional application-level
messages into the association in order to trick A and C
into communicating unnecessarily. On the other hand,
association forwarding does not necessarily violate any
well-defined security policy. It could even be used for
optimizing proxy implementations and for implementing
connection-establishment functionality. Thus, it is

probably best to consider association forwarding a
protocol feature that application designers need to know
about.

5. Solutions
This section suggests a variety of remedies to the

security issues identified earlier in the paper. We hope that
by this time at least some of the solutions have become
apparent to the reader. Each suggested solution fixes a
major vulnerability and, thus, prevents a large class of
attacks. Therefore, we suggest implementing as many of
them as one can without breaking compatibility with the
current protocol specification. The designers of protocol
extensions and future transport protocols should, of
course, take all these lessons into account.

5.1. Protecting old addresses
In IPv6, it is possible to prevent an attacker from

gaining the ownership of the old address of an honest
endpoint. The Secure Neighbor Discovery (SEND)
protocol [1] uses cryptographically generated addresses
(CGA) [2], i.e., IPv6 addresses where some address bits
encode a secure hash of the address owner’s public
signature key. This makes it possible for anyone to verify
the binding between the public key and the address
without any security infrastructure. All address resolution
messages on the local link are signed, which prevents the
attacker from using some else’s address.
Since the supply of IPv6 addresses is essentially

unlimited, it is not necessary to reuse them. An access
router that supports SEND will refuse to route packets to a
node that tries to use someone else’s old address. For the
details, we refer the reader to [1].

Client A Server B
(Attacker) Server C

INIT(TagA,{AddrA}) INIT(TagA,{AddrB, AddrA})

TagC,
COOKIE ECHO (CookieB)

TagC,
COOKIE ECHO (CookieC)

TagA, INIT ACK (TagC,
CookieC,{AddrC})

TagA, INIT ACK (TagC,
CookieB,{AddrB, AddrC})

TagA, COOKIE ACK

TagC , DATA
TagA , DATA

TagA, COOKIE ACK
B becomes inactive

 Figure 5: Association forwarding

In IPv4, there is no such elegant solution available. The
best the access network can do is to avoid recycling
addresses sooner than is absolutely necessary.

5.2. Preventing address squatting
There are several solutions for the address squatting

attacks. The first possibility is to assign port numbers at
the client end randomly rather than sequentially as in the
current implementations. Random port numbers make it
impossible for the attacker to guess which port number it
should squat, unless it repeats the attack for all 216 of
them. Randomizing the port numbers requires only a
minor modification to the implementations.
Another potential solution would be to relax the

definitions of an endpoint and association so that multiple
endpoints can use the same address. An endpoint could
allow two of its peers to share a transport address and
identify the association of a received packet based on not
only the source and destination transport addresses but
also the verification tag. The changes required to
implementations would be rather complex but, like
random port numbers, the changes could be deployed
locally at each endpoint without breaking compatibility
with existing implementations.
Peer address verification, which will be explained in

Section 5.5, can also prevent address squatting.

5.3. Encrypting cookies
As is obvious from our earlier discussion, the state

cookie should not be transferred in plaintext. In order to
prevent attackers from using the cookie mechanism as an
oracle to discover the verification tag values of an existing
association, the cookie should be encrypted. This can be
done conveniently with the same local key that is used for
computing the MAC on the cookie.
Encryption is, however, a relatively expensive

cryptographic operation and it may not be suitable for all
nodes. One alternative is to compute one-way hashes of
the tie tags and to send them in the cookie instead of the
plaintext values. Later, when the tie tag values are
compared with other tags, the comparison can just as
easily be done with hash values.
An even simpler solution, designed by Stewart and

Tüxen in reaction to an early version of this paper, is to
replace the tie-tags with nonces that are sent in the cookie
and stored in the existing TCB by the server.

5.4. Secure acknowledgements
SCTP acknowledgements, like all SCTP messages, can

be spoofed if the attacker knows the recipient’s
verification tag. The argument is that the verification tags

are a reasonable trade-off between security and cost.
However, it is possible to improve the robustness of the
acknowledgements without resorting to expensive
cryptography. The idea is to ensure that whoever sends an
acknowledgement has really seen the data.
In the secure acknowledgement scheme proposed by

Savage at al. [17], every packet contains a nonce (i.e., an
unpredictable random or pseudorandom number). The
acknowledgement contains the sum (or exclusive or) of
the nonces from all the received data packets. This idea is
particularly easy to implement for cumulative
acknowledgements but it is fairly efficient for selective
ones as well. In order to spoof such acknowledgements,
one needs to see every data packet. This would practically
stop the bombing attacks because the attacker could not
spoof the acknowledgements. Moreover, by requiring
every SCTP packet to contain a cumulative
acknowledgement (as in TCP), we can extend some
spoofing protection from the acknowledgements to other
messages. Unfortunately, replacing the acknowledgement
scheme would require a major revision of the SCTP
protocol and is perhaps an unrealistic plan.

5.5. Peer address verification
The bombing attack is possible because an endpoint

simply believes the list of addresses it receives from the
peer. This insight inspires another potential solution: an
endpoint should verify that the peer addresses are active
and that the nodes in these addresses want to receive data
for the particular association. It should initially flag all the
peer addresses as unverified and only clear the flags after
it has polled each address and received a positive
response.
There are two ways to verify a peer address. First, the

address that the peer uses during the handshake is
automatically verified as soon as the peer returns the first
packet with the correct verification tag. Second, the
heartbeat protocol can be used to poll addresses. For this
purpose, the heartbeats need to be implemented securely
so that it is not possible to spoof acknowledgements. This
can be achieved by including an unpredictable random or
pseudorandom nonce in the sender-specific information of
the heartbeat request.
As long as a peer address remains unverified, the

endpoint should not send data to the address or assume
that it really belongs to the peer endpoint. Instead, it
should allow an unverified address to appear in multiple
endpoints. Once the address has been verified for one
endpoint, it is safe to enter the slowstart phase for that
address and to assume that any other endpoints claiming
to have the same address are either mistaken or lying.
If there are many peer addresses, verifying them may

take a while because the SCTP specification allows

sending only one heartbeat at a time. If at any time there
are no active verified addresses available and data is
waiting in the queue to be sent, the address verification
can be optimized by bundling the heartbeat request,
including the nonce, with the first data to the new
transport address. The acknowledgements for the
heartbeat and for the data can also be bundled in one
packet. The result is very much like the secure
acknowledgement scheme discussed in the previous
section, except that it is used only for the first packet to
the destination.
The address verification is relatively straightforward to

implement because the main component, the heartbeat
mechanism for polling addresses, already exists. The
hardest part is probably that the socket API will need to be
modified to indicate the verification status of each
address. At the time of writing, one implementation
already included a nonce in the heartbeat messages. We
also understand that there already was a plan to add an
address verification mechanism, similar to the one
described here, to the SCTP implementation guidelines.

5.6. ICMP processing
As an alternative to the address verification, the

bombing attacks can be prevented by processing error
messages correctly. For this to work, it is important that
hosts, routers and firewalls send the ICMP error messages,
which they currently do not always do. The failure to send
the error messages makes them ideal targets for all kinds
of packet flooding attacks. Non-SCTP hosts and firewalls
might also consider implementing a minimal version of
the protocol that sends ABORT chunks in response to all
received SCTP packets.
The obvious way to process a received ICMP error

message is to treat it as an ABORT and to delete the
association state. However, error messages sent by routers
and firewalls often do not provide enough information to
justify terminating the association and the only possible
reaction is to merely increment an error counter. Also, it
can be argued that dropping the entire association is too
drastic a measure when an endpoint receives an ICMP
error message, or even an ABORT, that was triggered by
what the recipient thought was an out-of-the-blue packet.
A more reasonable reaction might be to delete the address
from which the error message was received.

5.7. ASCONF authentication
Although not yet published, the authors of the dynamic

address reconfiguration specification [21] are planning to
use unauthenticated key exchange to establish a session
key at the start of an association. This key will then be
used to authenticate ASCONF chunks. The idea in this

kind of leap-of-faith authentication is that, if the attacker
is not present at the time of the key exchange, it cannot
later spoof messages. Although not strong authentication
in the traditional sense, the solution provides a higher
level of security than plaintext verification tags and
prevents ASCONF spoofing.

5.8. Strong end-to-end security
For strong end-to-end security in SCTP, the choice is

currently between running either IPSec under the transport
layer [4] or TLS on top of it [12]. The advantage of IPSec
in comparison to TLS is that it protects also the signaling
chunks and not only user data. Thus, it can prevent most
of the attacks described in this paper. The verification of
peer addresses is still necessary, though, because IPSec
cannot prevent the bombing attack. A disadvantage of
relying on IPSec to prevent the other attacks is that it
limits the applicability of the protocol to situations where
the endpoints can authenticate each other.
Both end-to-end security mechanisms need small

modifications to work well with a transport protocol that
supports multihoming. In IPSec, in order to avoid creating
a separate security association between all pairs of
addresses, it has been necessary to slightly modify the key
exchange and the security association lookup. It is
currently not clear how to cope with the dynamic address
reconfiguration. TLS has also been adapted to work on top
of SCTP.

6. SCTP Implementations
In order to check whether the vulnerabilities found in

the SCTP specification exist in implementations, we
reviewed the following three open-source
implementations in October 2003:
• SCTP user-level library implementation by Andreas

Jungmaier et al., version sctplib-1.0.0
• KAME snapshot of 2003-10-20
• Linux kernel implementation, on kernel version

2.5.67
Based on the review, we believe that all these

implementations contained all of the vulnerabilities
discussed in this paper with the following exceptions:
KAME processed correctly the ICMP Host Unreachable
and Network Unreachable messages but not ICMP
messages from a reachable host that does not support
SCTP. KAME also sent a nonce in the first heartbeat to
each destination address.
At the time of preparation of the final version of this

paper, most of the vulnerabilities in the KAME
implementation have been fixed and we are working with
the implementers on the remaining minor issues.

7. Other protocols
There are quite a few proposals for extending TCP to

support multihoming and mobility. All the proposed TCP
multihoming and mobility extensions take measures to
prevent connection hijacking and data spoofing. These
measures vary from unpredictable sequence numbers and
nonces to strong cryptographic authentication. On the
other hand, all the end-to-end TCP multihoming and
mobility extensions that we have looked at are vulnerable
to the bombing attack.

Multi-homed TCP by Huitema [11] unifies
multihoming, mobility and network renumbering support.
The receiver of a packet identifies the connection based
on a context identifier that is sent in a TCP option, rather
than based on the source and destination addresses.
Outgoing packets are sent to one or more addresses from
which data has recently been received for the same
connection. Huitema already identifies the threat of
connection hijacking. The bombing attack is also possible
because, by spoofing source addresses, an endpoint can
trick its peer into sending all future packets to an arbitrary
address.

TCP-R by Funato et al. [10] implements mobility (but
no multihoming) with TCP options. After a mobile host
obtains a new address, it sends a redirect message to its
correspondent. In the primary mode, the security is based
on the TCP sequence numbers that must be in a certain
range after the move. There is also a strongly
authenticated mode. Nevertheless, there is nothing to stop
an attacker from lying about its own location and spoofing
acknowledgements in the bombing attack.

TCP Migrate by Snoeren and Balakrishnan [19] is
similar to TCP-R. Elaborate cryptography is used to
prevent connection hijacking but bombing attacks are
again possible.

TCP Multi-Home Options by Matsumoto et al. [13]
uses TCP options to implement full SCTP-like dynamic
multi-addressing. Because of the similarity with SCTP, it
suffers from all the vulnerabilities described in this paper
and would benefit from the solutions we have proposed.

MAST by Crocker [8] is a proposal to isolate dynamic
multi-addressing into a separate layer that can be inserted
under any transport protocol. Again, similarity with SCTP
means that essentially all our attacks and defenses are
relevant to MAST.
It is our feeling that any protocol that supports

multihoming or mobility with end-to-end signaling is
potentially vulnerable to the bombing attack and should
prevent it by verifying the peer addresses before using
them. Mobility protocols based on directories and other
infrastructure may also suffer from similar problems:

Dynamic DNS [24][25] can be used as a location
register for slowly-moving mobile nodes. While bombing

attacks that exploit Dynamic DNS have not been
documented, it is, at least in theory, possible to redirect
data to a target by setting a DNS entry to point to the
target IP address.

8. Related work
The protocols discussed in this paper are end-to-end

protocols in the sense of Saltzer et al. [16]. That is, both
signaling and data are sent between end nodes and the
only function of the network is to route packets between
them. In the proposed security solutions, we have
followed the same principle. The alternative would be to
build the security and mobility functions into the network
architecture, for example, in the style of cellular phone
networks or overlay networks. While this probably could
solve most of the security issues discussed in this paper,
such a solution would not be consistent with the Internet
design philosophy.

Mobile IPv6 is a network-layer mobility protocol that
hides the address changes from the transport protocols.
The bombing attack where the attacker gets a server to
send a flow of packets to the target by lying about its own
location was first recognized in Mobile IPv6 [3]. Similar
to the bombing attack described in this paper, an attacker
can start downloading a TCP stream and then trick the
server into redirecting it to a target address. The attacker
can also spoof TCP acknowledgements because it knows
the initial sequence numbers.
Mobile IPv6 solves the flooding problem with a

mechanism called return routability. The server sends a
nonce to the mobile’s new address to test whether the
mobile really is there. This inspired our heartbeat-based
solution for SCTP. The disadvantage of Mobile IPv6 is
that since it is not a transport protocol, the nonce cannot
be bundled with application data. Thus, our solution for
SCTP can save one roundtrip in comparison to TCP over
Mobile IPv6.
Using addresses as identifiers for multihomed and

mobile endpoints creates in inconsistency that is at least
partly responsible for some of the attacks described in this
paper. Chiappa [6] proposed the decoupling of endpoint
names and network addresses. This would probably be a
good starting point if we wanted to design a new transport
protocol.

The Host Identity Payload (HIP) protocol unifies
mobility, multihoming and security into a new protocol
layer between the network and transport layers [14]. One
of the fundamental ideas of HIP is to define a separate
namespace for endpoint identifiers and to map them
securely onto network addresses. HIP now incorporates
the return routability test for verifying peer addresses.
Because of the emphasis on endpoints, one could argue
that HIP is a transport-oriented protocol.

The Real-Time Transport Protocol (RTP) is used for
transmitting audio and video streams over the Internet.
Rosenberg [15] explains how SIP and other session-
establishment protocols can be used to direct RTP streams
to a flooding target. If we abstract away the cumbersome
details of the solution proposed in [15], the idea is similar
to our peer-address verification. The proposal also suffers
from the same connection-forwarding problem as SCTP.
We already mentioned the work of Savage et al. [17]

on TCP acknowledgements. The attacks we are trying to
prevent are slightly different; SCTP was already designed
with the TCP ACK-splitting attack in mind. Nevertheless,
the same secure acknowledgement scheme works well to
prevent the spoofing of SCTP acknowledgements. With
secure acknowledgements, we would not even need to
send a heartbeat request to verify the peer address. The
first secure acknowledgement would have the same effect
as a secure heartbeat. SCTP, in fact, almost does the right
thing because, unlike TCP mobility solutions, it maintains
a different congestion window for each peer address.

9. Conclusion
Adding multihoming and mobility support to Internet

transport protocols changes the environment in which
transport-layer security mechanisms operate. This may
cause non-cryptographic security mechanisms, such as
TCP sequence numbers and SCTP verification tags, to
break. The attacker may be able to spoof data and
signaling messages and hijack connections. Dynamic
multi-addressing also gives raise to new types of attacks
such as address squatting, redirection of data from a server

to the target of a bombing attack, and connection
forwarding. In this paper, we describe a number of such
attacks against SCTP and suggest low-cost changes to the
protocol specification and implementations. Several SCTP
implementations were found to be vulnerable to all or
most of the attacks described in this paper. Table 1
summarizes the main protocol weaknesses, attacks and
solutions and how they relate to each other. (Some attacks
depend on multiple vulnerabilities, which is indicated by
multiple crosses in the column. We have also marked the
changes that should be made immediately to the
implementations.) The lessons from our security analysis
apply to other transport protocols and to practically any
multihoming or mobility solution that uses end-to-end
signaling.

Acknowledgements
We thank Randall Stewart, Michael Tüxen and Alf

Zugenmaier for their extensive comments that were
invaluable in preparing this paper.

At
ta

ck
 S

ce
na

rio
Da

ta
sp

oo
fin

g w
ith

 sn
iffe

d t
ag

Br
ute

-fo
rce

 AS
CO

NF
 sp

oo
fin

g
Ad

dre
ss

 sq
ua

ttin
g (

Fig
.2)

As
so

cia
tio

n h
ija

ck
ing

 (F
ig.

3)
Bo

mb
ing

 at
tac

k (
Fig

.4)
As

so
cia

tio
n f

orw
ard

ing
 (F

ig.
5)

Protocol Weakness Solution
Spoofing a single packet possible X Leap-of-faith authentication for ASCONF

Plaintext cookie X Encrypt cookies or replace tie-tags with nonces X
Dynamic topology exposes tags X X Secure acknowledgements

Attacker is the new address owner X Secure neighbor discovery
Unverified peer addresses X X Peer address verification with secure heartbeats X

ICMP error messages ignored X Implement ICMP error processing X
Endpoints cannot share addresses X Randomize initiator port number or redefine endpoint X

Proxying possible X Understand and use with care

Implement
immediately

Table 1: Main weaknesses, attacks and solutions

References
[1] Jari Arkko, James Kempf, Bill Sommerfeld, Brian Zill,

and Pekka Nikander. Secure neighbor discovery (SEND).
Internet-Draft, IETF Securing Neighbor Discovery
Working Group, February 2004. Work in progress.

[2] Tuomas Aura. Cryptographically generated addresses
(CGA). In Proc. 6th Information Security Conference (ISC
'03), LNCS 2851, pages 29-43, Bristol, UK, October 2003.
Springer.

[3] Tuomas Aura, Michael Roe, and Jari Arkko. Security of
Internet location management. In Proc. 18th Annual
Computer Security Applications Conference, Las Vegas,
NV USA, December 2002. IEEE Computer Society.

[4] Steven Bellovin, John Ioannidis, Angelos D. Keromytis,
and Randall R. Stewart. On the use of stream control
transmission protocol (SCTP) with IPSec. RFC 3554,
IETF, July 2003.

[5] Scott Bradner, Allison Mankin, and Jeffrey I. Schiller. A
framework for purpose-built keys (PBK). Internet-Draft,
IETF, June 2003.

[6] J. Noel Chiappa. Endpoints and endpoint names: A
proposed enhancement to the internet architecture.
Expired Internet Draft, 1999. (Archived at
http://www.watersprings.org/.)

[7] Phillip T. Conrad, Gerard J. Heinz, Armando L. Caro Jr.,
Paul D. Amer, and John Fiore. SCTP in battlefield
networks. In Proc. MILCOM '01, Washington, DC USA,
October 2001.

[8] Dave Crocker. Multiple address service for transport
(MAST), an extended proposal. Internet-Draft, IETF,
September 2003. Work in progress.

[9] Thomas Dreibholz, Andreas Jungmaier, and Michael
Tüxen. A new scheme for IP-based Internet mobility. In
Proc. 28th Annual IEEE Intl. Conference on Local
Computer Networks (LCN '03), pages 99-108,
Königswinter, Germany, October 2003. IEEE Computer
Society.

[10] Daichi Funato, Kinuko Yasuda, and Hideyuki Tokuda.
TCP-R: TCP mobility support for continuous operation. In
International Conference on Network Protocols (ICNP
'97), pages 229-236, Atlanta, GA USA, October 1997.
IEEE Press.

[11] Christian Huitema. Multi-homed TCP. Expired Internet
Draft, May 1995. (Archived at
http://www.watersprings.org/.)

[12] Andreas Jungmaier, Eric Rescorla, and Michael Tuexen.
Transport layer security over stream control transmission
protocol. RFC 3436, IETF, December 2002.

[13] Arifumi Matsumoto, Masahiro Kozuka, Kenji Fujikawa,
and Yasuo Okabe. TCP multi-home options. Internet-
Draft, IETF, October 2003. Work in progress.

[14] Pekka Nikander, Jukka Ylitalo, and Jorma Wall.
Integrating security, mobility, and multi-homing in a HIP
way. In Proc. Network and Distributed Systems Security

Symposium (NDSS '03), pages 87-99, San Diego, CA
USA, February 2003.

[15] Jonathan Rosenberg. The real time transport protocol
(RTP) denial of service (DoS) attack and its prevention.
Internet-Draft, IETF SIP Working Group, June 2003.
Work in progress.

[16] Jerome H. Saltzer, D. P. Reed, and D. D. Clark. End-to-
end arguments in system design. ACM Transactions on
Computer System, 2(4):277-288, November 1984.

[17] Stefan Savage, Neal Cardwell, David Wetherall, and Tom
Anderson. TCP congestion control with a misbehaving
receiver. Computer Communication Review, 29(5):71-78,
October 1999.

[18] Christoph L. Schuba, Ivan V. Krsul, Markus G. Kuhn,
Eugene H. Spaffold, Aurobindo Sundaram, and Diego
Zamboni. Analysis of a denial of service attack on TCP. In
Proc. 1997 IEEE Symposium on Security and Privacy,
pages 208-223, Oakland, CA USA, May 1997. IEEE
Computer Society Press.

[19] Alex C. Snoeren and Hari Balakrishnan. An end-to-end
approach to host mobility. In Proc. 6th ACM/IEEE
International Conference on Mobile Computing and
Networking (MobiCom'00), pages 155-166, Boston, MA
USA, August 2000.

[20] Randall R. Stewart, Lyndon Ong, Ivan Arias-Rodriguez,
Kacheong Poon, Phillip T. Conrad, Armando L. Caro Jr.,
and Michael Tuexen. Stream control transmission protocol
(SCTP) implementer's guide. Internet-Draft draft-ietf-
tsvwg-sctpimpguide-09, IETF Transport Area Working
Group, September 2003. Work in progress.

[21] Randall R. Stewart, Michael Ramalho, Qiaobing Xie,
Michael Tuexen, Ian Rytina, Maria-Carmen Belinchon,
and Phillip Conrad. Stream control transmission protocol
(SCTP) dynamic address reconfiguration. Internet-Draft
draft-ietf-tsvwg-addip-sctp-08, IETF Transport Area
Working Group, September 2003. Work in progress.

[22] Randall R. Stewart and Qiaobing Xie. Stream Control
Transmission Protocol (SCTP), A Reference Guide.
Addison-Wesley, 2001.

[23] Randall R. Stewart, Qiaobing Xie, Ken Morneault, Chip
Sharp, Hanns Juergen Schwarzbauer, Tom Taylor, Ian
Rytina, Malleswar Kalla, Lixia Zhang, and Vern Paxson.
Stream control transmission protocol. RFC 2960, IETF,
October 2000.

[24] Paul Vixie, Susan Thomson, Yakov Rekhter, and Jim
Bound. Dynamic updates in the domain name system
(DNS UPDATE). RFC 2136, IETF Network Working
Group, April 1997.

[25] Brian Wellington. Secure domain name system (DNS)
dynamic update. RFC 3007, IETF, November 2000.

[26] Wei Xing, Holger Karl, Adam Wolisz, and Harald Müller.
M-SCTP: design and prototypical implementation of an
end-to-end mobility concept. In Proc. 5th Intl. Workshop
The Internet Challenge: Technology and Applications,
Berlin, Germany, October 2002.

