
1

Host Identity Protocol (HIP): Connectivity,
Mobility, Multi-homing, Security, and Privacy over

IPv4 and IPv6 Networks
Pekka Nikander Andrei Gurtov Thomas R. Henderson

Abstract—The Host Identity Protocol (HIP) is an inter-
networking architecture and an associated set of protocols,
developed at the IETF since 1999 and reaching their first stable
version in 2007. HIP enhances the original Internet architecture
by adding a name space used between the IP layer and the
transport protocols. This new name space consists of crypto-
graphic identifiers, thereby implementing the so-called identifier
/ locator split. In the new architecture, the new identifiers are used
in naming application level end-points (sockets), replacing the
prior identification role of IP addresses in applications, sockets,
TCP connections, and UDP-based send and receive system calls.
IPv4 and IPv6 addresses are still used, but only as names for
topological locations in the network. HIP can be deployed such
that no changes are needed in applications or routers. Almost
all pre-compiled legacy applications continue to work, without
modifications, for communicating with both HIP-enabled and
non-HIP-enabled peer hosts.

The architectural enhancement implemented by HIP has pro-
found consequences. A number of the previously hard networking
problems become suddenly much easier. Mobility, multi-homing,
and baseline end-to-end security integrate neatly into the new
architecture. The use of cryptographic identifiers allows enhanced
accountability, thereby providing a base for easier build up of
trust. With privacy enhancements, HIP allows good location
anonymity, assuring strong identity only towards relevant trusted
parties. Finally, the HIP protocols have been carefully designed
to take middle boxes into account, providing for overlay networks
and enterprise deployment concerns.

This article provides an in-depth look at HIP, discussing its
architecture, design, benefits, potential drawbacks, and ongoing
work.

Index Terms—Inter-networking, Mobile communication,
Multi-access communication, Communication system
security, Communication architecture, Host Identity Protocol,
Identifier/Locator split

I. INTRODUCTION

The Host Identity Protocol (HIP) and architecture [1], [2] is
a new piece of technology that may have a profound impact
on how the Internet will evolve over the coming years. The
original ideas were formed through discussions at a number
Internet Engineering Task Force (IETF) meetings during 1998
and 1999. Since then, HIP has been developed by a group of
people from Ericsson, Boeing, HIIT, and other companies and

P. Nikander is with NomadicLab, Ericsson, Jorvas FIN-02420, Finland. e-
mail: pekka.nikander@nomadiclab.com

A. Gurtov is with Helsinki Institute for Information Technology, Helsinki
University of Technology, P.O. Box 9800, FIN-02015 TKK, Finland. e-mail:
gurtov@hiit.fi

T. Henderson is with the Boeing Company, P.O. Box 3707, Seattle, WA,
USA. e-mail: thomas.r.henderson@boeing.com

academic institutions, first as an informal activity close to the
IETF and later within the IETF HIP working group (WG) and
the HIP research group (RG) of the Internet Research Task
Force (IRTF), the research arm of the IETF.

From a functional point of view, HIP integrates IP-layer
mobility, multi-homing and multi-access, security, NAT traver-
sal, and IPv4/v6 interoperability in a novel way. The result is
architecturally cleaner than trying to implement these func-
tions separately, using technologies such as Mobile IP [3] [4],
IPsec [5], ICE [6], and Teredo [7]. In a way, HIP can be
seen as restoring the now-lost end-to-end connectivity across
various IP links and technologies, this time in a way that
is secure and supports mobility and multi-homing. As an
additional bonus, HIP provides new tools and functions for
future network needs, including the ability to securely identify
previously unknown hosts and the ability to securely delegate
signalling rights between hosts and from hosts to other nodes.

From a technical point of view, the basic idea of HIP is to
add a new name space to the TCP/IP stack. These names are
used above the IP layer (IPv4 and IPv6), in the transport layer
(TCP, UDP, SCTP, etc) and above. In this new name space,
hosts (i.e., computers) are identified with new identifiers, Host
Identifiers. The Host Identifiers (HI) are public cryptographic
keys, allowing hosts to authenticate their peer hosts directly
by their HI.

HIP can be considered as one particular way of imple-
menting the so-called identifier / locator split approach [8]
in the stack. That is, while in the current IP architecture
the IP addresses assume the dual role of acting both as host
identifiers and locators (see Section IV-B), in HIP these two
roles are cleanly separated. The Host Identifiers take, naturally,
the host identifying role of the IP addresses while the addresses
themselves preserve their locator role.

As a result of adding this new name space to the stack,
when applications open connections and send packets, they
no longer refer to IP addresses but to these public keys, i.e.,
Host Identifiers. Additionally, HIP has been designed in such a
way that it is fully backwards compatible to applications1 and
the deployed IP infrastructure. Hence, for example, when an
existing, unmodified e-mail client opens a connection to the e-
mail server hosting the mailbox, the e-mail client hands over a

1The application level backwards compatibility does not necessarily apply
to diagnostic and other system administration related applications, depending
on how they use IP addresses.

2

reference to the public key2 to the operating system, denoting
that it wants the operating system to open a secure connection
to the host that holds the corresponding private key, i.e., the
e-mail server. The resulting connection can be kept open even
if both of the hosts, i.e., the client and the server, are mobile
and keep changing their location. If the hosts have multiple
access links in their disposal, HIP allows these multiple links
to be used for load balancing or as backups, invisible from
the applications.

To deploy HIP in a limited environment, all that is required
is to update the involved hosts to support HIP. No changes
are required to typical applications or to the IP routing
infrastructure; all nodes will remain backwards compatible
with existing systems and can continue to communicate with
non-HIP hosts. For full HIP support, it is desirable to add
HIP related information to the Domain Name System (DNS).
In addition, a new infrastructure service is needed to support
HIP rendezvous services (see Section V-B). If it is impossible
to upgrade the operating system of some particular host, e.g.,
a legacy mainframe, it is also possible to add a front-end
processor to such a system. The front-end processor acts as a
HIP proxy, making the legacy host to appear as (a set of) HIP
host(s) to the rest of the network.

HIP is currently published as an experimental IETF stan-
dard, with the publication of the RFCs describing the proto-
cols, main extensions, and infrastructure support in early 2008.
The architecture itself is described in RFC 4423 [1], published
in 2006. There are three independent open-source implemen-
tations of HIP, and an active, growing user community.

In this article, we describe the history behind HIP, the HIP
architecture, the associated protocols, the potential benefits
and drawbacks for prospective users, and ongoing work.
Although existing surveys [9], [10] briefly described HIP in
comparison with other mobility and multihoming protocol, no
comprehensive tutorial paper had yet been published, to our
knowledge.

The rest of the article is organised as follows. First, in
Section II, we briefly describe how the environment has
changed since the Internet architecture and protocols were
originally developed. Consequently, in Section III, we discuss
some major problems in the current Internet: loss of connec-
tivity, poor support for mobility and multi-homing including
problems with multicast, surge of unwanted traffic, and lack of
authentication, privacy, and accountability. These problems are
mainly a result of the changing environment and requirements;
HIP changes the architecture, helping to solve the problems. In
Section IV we describe the HIP architecture and related proto-
cols. In Section V, we discuss how HIP helps with connectiv-
ity, mobility, and multi-homing over IPv4 and IPv6 networks.
Next, in Section VI we briefly look back at unwanted traffic
and lack of authentication, privacy, and accountability, and
discuss how HIP could help in solving those. In Section VII,
we discuss the maturity status of HIP, reporting where it is
currently being used, the standardisation situation, and existing
implementations. Section VIII concludes the paper.

2How exactly an application refers to the Host Identity public keys depends
on implementation. In most implementations today, the applications use Host
Identity Tags (see Section IV-C), which look like IPv6 addresses.

II. BACKGROUND: EVOLVING ENVIRONMENTS

The original design of the TCP/IP Internet protocols was
created for an environment where the end-users were assumed
to be mutually trusting, at least to a minimal degree, and
where the network is assumed to be inherently unreliable due
to a potential attacker physically destroying routers and links
[11]. Since then, the environment has grossly changed as a
side effect of the huge success of the Internet, creating a
need to devise a communication architecture that provides the
following functions:

• Ability to operate over all kinds of underlying networks,
including ad hoc, commercial, and dedicated; this implies
the ability to dynamically pay for the services on-line, the
ability to hide the real identities of communicating parties
from the underlying networks, etc.

• Ability to survive in a partially hostile environment where
some of the underlying networks may be only partially
co-operating, competing, or even outright antagonistic to
each other; this implies the ability to isolate underlying
networks from each other, when needed.

• Ability to support application, host, and sub-network level
mobility and multi-access as primary design elements and
not as extensions.

• Ability to support full location privacy, especially against
any transit networks and other third parties.

The goals above can be seen as a new incarnation of
the original IP design goal, adapted to the contemporary
needs. Nowadays the underlying communication network is
more diverse, sometimes even hostile, in addition to being
unreliable, and a fraction of users must be assumed to be
egregiously selfish or outright malicious.

Along with revising the original goals to meet today’s
needs, it has also become clear that the operational costs of
the current network are becoming quite high. Consequently,
there is a need for a network that can self-organise, including
functions such as infrastructure discovery and the ability
to find reasonably functioning communication paths among
multiple alternatives.

The HIP architecture and base protocols aim towards the
aforementioned goals. While they do not, as such, provide all
functionality that is needed to fulfill the goals, they create a
new inter-connectivity layer that spans over both IPv4 and
IPv6, relying heavily on the availability of IP infrastructure
but, in theory at least, being also able to run over non-IP
links and media. They provide baseline protection for com-
munication, including optional functionality to fully protect
the identity of communicating parties from outsiders. They
contain a set of basic mechanisms to support host mobility
and multi-homing, allowing these mechanisms to be adopted
and extended to better fit to differing environments. Finally,
they aim to provide a similar or higher level of flexibility than
the original IP architecture did, allowing the protocols and
mechanisms to be easily extended.

III. FUNDAMENTAL PROBLEMS

Before diving to the details of the HIP architecture and
protocols, we take a brief look at a few of the most challeng-
ing problems in the contemporary Internet: loss of universal

3

connectivity, poor support for mobility and multi-homing,
unwanted traffic, and lack authentication, privacy, and account-
ability. This forms a baseline for Sections V and VI, where
we explain how HIP and other mechanisms relying on HIP
alleviate these problems. We do not claim that HIP is the only
solution for these problems; many different protocols such as
Mobile IP, MobIKE, TLS/DTLS, DNSSEC, etc. have been
defined to solve some subset below. We believe, however, that
HIP offers an interesting and unique approach to providing an
integrated solution to all of the problems listed below.

At the same time, it must be understood that HIP does not
provide much remedy, at least not currently, to a number of
other hard problems in the Internet, such as self-organising
networks and infrastructure, or intermittent connectivity. On
the other hand, there may certainly be new, still-unfound ways
to utilise HIP to make those or other hard problems easier to
solve.

A. Loss of universal connectivity

Compared to the original Internet, perhaps the largest prob-
lem all current ones is the loss of connectivity, caused by
NATs, firewalls, and dynamic IP addresses. This issue is so
familiar to everyone using the Internet that it may not appear
a problem at all; almost no-one any more expects to be able
to connect to another host at will. The so-called Internet
transparency or the end-to-end problem refers to the fact that
the Internet no longer has a universal addressing scheme as it
originally did [12].

The so-called classical network-layer addressing invariants
(see Section IV-A) have been eroded by the use of private
address space (NAT for IPv4) and by the introduction of IPv6
which is incompatible with IPv4 on the wire [1]. For the fore-
seeable future, the networking landscape will be dominated by
a mixture of addressing realms, including private and public
IPv4 and IPv6 address spaces, and there will be a desire for
hosts in one realm to access services in another. Attempts
to deal with these realms at the network layer via NAT [13]
and protocol conversion boxes (NAT-PT) [14] have proved
to be fragile, raft with security issues, and architecturally
undesirable (see, e.g., [15]). The HIP architecture offers a
possible path for overcoming these limitations by providing
a new end-to-end naming invariant and protocol mechanisms
that allow the IP addresses used on a wire to be used as
ephemeral locators rather than host identifiers themselves.

The Internet architecture has historically leaned away from
providing explicit support for policy-enforcing middle-boxes
(firewalls) that control network-level access between network
segments. Nevertheless, operational networks today are reliant
on firewalls that attempt to enforce network policies to allow or
deny traffic based on IP addresses and transport port numbers.
The security robustness of current approaches is challenged by
the fact that it is difficult for such firewalls to control what is
actually sent on a given port, and to attribute a particular IP
address to a particular legitimate host rather than an impostor
or inside attacker who acquired an address. Usually, there is
little or no communication between the end hosts and the
firewalls, leading to fragile escalation techniques whereby end
hosts try various tricks to get through such restrictions.

Many aspects of the HIP architecture, together with a
number of design details related to middle boxes, e.g., the
ability of hosts to directly authenticate themselves to firewalls
via explicit registration or implicit overhearing of a control
handshake (see Section V-D), are results from trying to re-
establish, in a controlled manner, the original transparency
principles of the Internet. This aim, together with the require-
ments caused by the changed environment, can be seen as the
main driving forces behind the design decisions of HIP.

B. Poor support for mobility and multi-homing

Effective mobility support requires a level of indirec-
tion3 [8], to map the mobile entitys stable name to its dynamic,
changing location. Effective multi-homing support (or support
for multi-access / multi-presence) requires a similar kind of
indirection, allowing the unique name of a multi-accessible
entity to be mapped to the multitude of locations where it is
reachable.

Within the Internet community, the historical approach to
solve these problems has been to consider mobility and multi-
homing as separate, technical problems, something that just
needs to be solved through engineering. The main result
of this attitude are the Mobile IP protocols [3], [4], which
are architecturally based on re-using a single name space,
the IP address space, for both stable host identifiers (Home
Addresses) and dynamic locators (Care-of Addresses). While
the approach works in basic network topologies, it creates two
major drawbacks. Firstly, it binds the communication sessions
(TCP connections and application state) to the home addresses.
This, in turn, when combined with the only known scalable
solutions to a number of related security problems, creates
an undesirable dependency on a constant reachability of the
home address. In other words, the mobile host is intrinsically
bound to the availability of the home addresses; the home
agent becomes a new single point of failure4.

Secondly, approaches that use names from a single name
space for multiple purposes create a number of potential
semantic problems [16]. For example, the so-called alias
problem [17] relates to the use of multiple names from a
single name space to denote same entities in a non-transparent
way. In practical terms, when Mobile IP is used, there is no
easy way to tell if two IP addresses point to a single host
(e.g., due to one being its home address and another one
its care-of address) or not, i.e., whether one is merely an
alias for the other or an identifier for a genuinely different
host. For applications or users that cache previously used IP
addresses and reuse them later, aliasing can cause applications

3The existing layer of indirection, i.e., mapping from DNS names to IP
addresses, is insufficient for two reasons. Firstly, not all applications use the
DNS, and even those that use it often cache or store IP addresses internally.
Secondly, in real life updates to DNS data may take more than 30 minutes
to get globally distributed, making it too slow to provide a solution for many
realistic mobility situations.

4From a practical point of view, the Mobile IP Home Agent being a
single point of failure may not be really a problem. It is a matter of system
engineering to overcome the problem through distributing the functionality
over a number of distinct nodes. However, to distribute the Home Agent
functionality over a number of sites, help from the routing system is needed,
thereby placing some extra burden upon it, re-creating the original mobility
and multi-homing problem in a recursive manner.

4

to unknowingly connect to different hosts. On the other hand,
multi-homing creates the inverse problem, where aliasing
(multiple IP addresses pointing to a single host) is the desired
outcome but the applications are not aware of it.

As briefly mentioned above, HIP provides an alternative
approach to implementing mobility and multi-homing. It ex-
plicitly adds a new layer of indirection and a new name space,
thereby adding the needed level of indirection to the architec-
ture. Furthermore, the inherent ability to delegate, provided
by the cryptographic nature of the Host Identifiers, allows
HIP to provide more natural support for other granularities
of mobility, such as application or sub-network mobility (see
Sections V-E and V-F).

C. Problems with multicast

Certain applications, such as Internet TV, involve data
transmission from one source to multiple destinations. Other
applications, such as multiparty video conferencing, involve
transmission from several sources to several destinations. Such
scenarios are most efficiently handled using multicast data
transmission, where the source transmits a single copy of data
and routers or hosts in the network multiply packets as needed
for delivery to downstream recipients.

The multicast can be implemented on the networking layer
as native IP multicast, or as an application service on the
overlay network. The network multicast is more efficient than
the application multicast, because it can achieve ”one link
– one packet” principle, whereas application multicast can
still transmit multiple copies of the same packet of a link.
Application multicast is easily deployable while several issues
hindered deployment of IP multicast.

Mobility of hosts participating to multicast is a largely
unsolved problem. Especially, if the multicast source changes
the IP address, the whole multicast tree needs to be re-
constructed. Two common approaches for multicast receiver
mobility are bidirectional tunnelling, based on Mobile IP [3],
which tunnels multicast data to and from the home and
visited networks, and remote subscription [18], in which the
visiting multicast receiver joins the local multicast tree. Some
solutions to provide authentication to multicast receivers have
been proposed. However, they are only able to authenticate
subnetworks where the user is located, but not the host itself.
Therefore, other hosts from the same subnetwork can receive
the stream without authentication. Researchers have started to
explore whether HIP can help also to alleviate these problems
by allowing hosts to be more directly authenticated by the
network [19].

D. Unwanted traffic

The various forms of unwanted traffic, including spam, dis-
tributed denial of service (DDoS), and phishing5, are arguably
the most annoying problems in the current Internet. Most of us

5The problem of phishing is more complex than the other two main harmful
forms of unwanted traffic, DDoS and spam, for reasons that go beyond the
scope of this paper. The main economic argument related to unwanted traffic
relates also to it, even if it leaves many other aspects aside. The related aspects
of authentication and attribution are discussed in Section III-E

receive our daily dosage of spam messages; the more lucky of
us just a few of them, the more unlucky ones a few hundreds
each day. Distributed denial of service attacks are an everyday
problem to large ISPs, with each major web site or content
provider getting their share. Phishing is getting increasingly
common and cunningly sophisticated.

The current Internet architecture can be considered as
a distributed extension of the well-known message passing
interprocess communication paradigm [20]. That is, within
a single centralised computer, an operating system typically
provides resources for and isolates a number of concurrent,
parallel processes, each running a separate program or per-
forming a specific task. In any modern operating system, the
communication between the processes is strictly controlled by
the operating system, in order to provide a level of sanity,
thereby preventing bugs or malicious code in one program to
cause (much) harm to other programs.

In the message passing paradigm, a sending process cre-
ates a message and sends it to a specific other process, by
naming the recipient with a name. The current packet-based
networking, as we know it from the Internet, can clearly be
considered as an extension of this message passing Inter-
Process Communication (IPC) paradigm. In both the paradigm
and in the Internet, there is a sender (whether a process
or a host) that creates a message, names a recipient, and
asks for the underlying mechanisms to pass the message
to the recipient. However, what is noteworthy here is that
current Internet implementation gives all power to the sender.
Initially, when the sender creates a message and dispatches
it, the network has no idea of whether the recipient will be
interested in the message. Only when the message arrives at
the named receiving host (or its proxy, such as a firewall),
the recipients consent is consulted. Only then are unwanted
messages dropped.

Basing on this and looking at the situation from an economic
point of view, we can characterise the current Internet as
a global, distributed message passing IPC system where the
main cost of unwanted communication is paid by the recipient.
This is a direct (though certainly unintentional) consequence
of the network architecture. By explicitly and directly naming
all potential recipients, we create a system where the senders
can easily act on their desire to send data to any recipient
in the network. Given that under the typical flat-fee contracts
the marginal cost of sending additional packets is very close to
zero (up to some capacity limit), there are few or no incentives
for refraining from sending unwanted traffic; sending some
more packets, either just for fun to gain legitimate or illegiti-
mate profits, costs so little that it does not matter. Hence, for
SPAM, even a marginal response rate creates a strong incentive
for sending unsolicited advertisements, and for DDoS-based
extortion, even a small success rate creates a strong incentive
to launch attacks [21].

To summarise, our claim is that the current unwanted traffic
problem is a compound result from the following factors:

• An architectural approach where each recipient has an
explicit name and where each potential sender can send
packets to any recipient without the recipient’s consent.

• A business structure where the marginal cost of sending

5

some more packets (up to some usually quite high limit)
is very close to zero.

• The lack of laws, international treaties, and especially
enforcement structures that would allow effective punish-
ment of those engaging in illegal activity in the Internet.

• The basic profit-seeking human nature, driving some
people to unethical behaviour in the hopes for easy
profits.

Of course, there is nothing that one can do with the last
co-factor (human nature), other than to accept it. The third
one is more regulatory in nature and therefore falls beyond
the scope of this article. For the other two, the separation
of identifiers and locators can be used to create architectures
where a sender must acquire the recipients consent before it
can send data beyond severely rate-limited signalling messages
(see Section VI-B).

E. Lack of authentication, privacy and accountability

The aim of authentication, privacy, and accountability is to
prevent organisationally or socially undesirable things from
happening, on one hand by imposing technical restrictions on
information flow, and on the other hand by creating explicit
incentives for desirable behaviour. Hence, in some sense our
aim here is similar in nature to our goal with reducing
unwanted traffic.

Today, the authentication problem is technically easy but
socially very challenging to solve. Except for semi-widespread
use of TLS certificates for HTTP, there are no widespread,
interoperable authentication techniques in use in the Internet,
even if S/MIME [22], IPsec [5], etc., have been available
and widely implemented for a decade or longer. The main
problems related to the difficulty of creating trust between
users and organisations.

The privacy problem is a complex one, with at least three
different viewpoints. From the Orwellian point of view, the
question is about freedom of speech and governmental control.
A sufficient privacy system ensures that we can express our
opinions and think freely, within reasonable bounds (like not
committing clearly criminal acts) even when our opinions are
socially unacceptable or hostile towards the governing regime.
The Kafkaesque aspect of privacy focuses on citizens ability
to retain their autonomy without fear of unfounded litigation
or other harassing legal or other action [23]. Thirdly, the
economic aspect of privacy relates to the fine balance between
socially beneficial differentiated pricing versus socially harm-
ful price discrimination6 [24]. From these three different points
of view, it seems a necessity to provide a reasonable base-level
of privacy as a built-in feature in future networks.

The flip side of privacy is accountability. Unbounded pri-
vacy encourages irresponsible behaviour patterns, such as ram-
pant advertising. To counter these, increased privacy requires
increased accountability; a fact that appears as a paradox
from the technical point of view. A key to understanding this

6There are widely differing views on when price differentiation is socially
useful and when harmful; the issue often depends on the exact details of the
markets. However, the whole issue falls beyond the scope of this paper. The
interested reader is advised to the cited and other papers by Odlyzko.

technical paradox is to consider the different dimensions of
communication. At the baseline level, we can make a differ-
ence between four dimensions: the content of communication,
the parties communicating, their locations, and finally the very
fact that a piece of communication took place (existence). If
the system is able to provide strong insulation between these
dimensions so that each party gets only the relevant pieces
of information, a high level of privacy can be preserved. For
example, anyone whose resources are used to carry packets
needs to know whom to attribute the packets to, but should
have no access the information content, the identity of the
other parties7, nor their locations.

At the same time, if these components can be combined,
post hoc, as in the face of criminal activity, it becomes
possible to provide accountability. For example, if a first party,
seeing the content, does not know the real-world identity
of the peer host and definitely not its location, if a second
party, seeing the identities, does not know the contents of the
communication nor the locations of the communicating parties,
and a third party, knowing the locations, has no clue about
contents nor identities, the system can be engineered to be
highly privacy protecting. If, at the same time, it is possible to
combine the knowledge from these three parties, e.g., through
manual actions or relatively pricey cryptographic operations,
accountability becomes possible in a way that makes privacy
violations hard and costly.

While the Host Identity Protocol does not directly provide
means to address the privacy and accountability problems, it
changes the landscape in a number of ways. Firstly, the use of
cryptographic host identifiers as an integral part of connectiv-
ity, thereby providing automatic identity authentication, makes
it easier to attribute a series of acts to a distinct host. Secondly,
the separation of identities and locators makes it easier to hide
the topological location of communicating parties. Thirdly,
there are a few privacy extensions to HIP [25] [26] that allow
the identities of the communicating parties to be hidden from
third parties.

IV. THE HIP ARCHITECTURE AND BASE EXCHANGE

With the changing networking environment, and a few
problems for which the current architecture is not well-suited
to solve, briefly described above, we now turn our attention
back to the Host Identity Protocol itself. In this Section, we
describe what HIP is in detail; after that, in the two next
sections, we turn our attention on how HIP can be used as a
tool in alleviating the above discussed architectural problems.

The original ideas for HIP architecture grew from the desire
to provide a means for providing better support for security
and mobility within the IP architecture. At the same time,
from the beginning, there were alluring sensations that HIP

7In an architecture that is both privacy protecting and where all traffic can
be attributed to some real world entity, each access provider needs to know the
identity of the host sending or receiving packets, each transit provider must
be able to attribute the packets to the access providers, etc. However, there is
no ex ante need for any single party to be able to attribute both the sender
and the receiver of any single packet, or a packet flow, to respective real
world entities. In contrary, such a practise creates an economic information
asymmetry that more easily leads to socially negative, unconsented forms of
traffic or price differentiation.

6

might turn out to be much more, i.e., it might provide a
means to heal the damage caused by NATs by providing a new
name space for interconnectivity across distinct networks (see
Sections III-A, V-C and V-D). Architecturally, HIP promises
to fulfill those inklings and more. However, only time will
show if it has enough of appeal to make any larger effect on
the networking reality of tomorrow.

The HIP architecture was carefully crafted to meet the
known current requirements and simultaneously provide for
enough flexibility for future adaptations. Over the years, the
aim has broadened from a name space that works as a security
and mobility tool, through generalising the mobility support
to cover also multi-homing, towards a general sublayer that
provides interconnectivity in the same way the original IP
did. In other words, the current HIP aim can be characterised
as providing the lowest layer in the stack that encompasses
location-independent identifiers and end-to-end connectivity.
Furthermore, HIP cleanly separates host-to-host signalling and
data traffic into separate planes, i.e., it can act both as an
interconnectivity-level signalling protocol and as a general
carrier for higher-layer signalling. Thereby it has appeal for
architectures where control is separated from data, e.g., due
to commercial requirements.

Starting from the architectural ideas, i.e., the desire to add a
new, secure name space and a new layer of indirection, HIP has
been carefully engineered towards two goals that are in partial
conflict with the architectural ideas. Firstly, it is inherently
designed to utilise, in an unmodified form, the current IP-based
routing infrastructure (IPv4 and IPv6). At the same time, it was
engineered to support the current application networking APIs
with sufficient semantic compatibility8. Hence, HIP is back-
wards compatible and deployable in parallel to the existing
stack, requiring no changes to the routing infrastructure or to
the typical user-level applications. Secondly, the goal has been
to implement the desired new (or renewed) functionality with
a minimal set of changes to the existing system. In practical
terms, a HIP implementation that is integrated with an existing
kernel-level TCP/IP typically requires only a few hundred lines
of code modifications to the kernel9; all the rest runs in user
space. Even the user level components are quite small, at
least if compared to alternative ways of providing the same
functionality (see Section IV-E for more details).

A. Approach

Architecturally speaking, the current division of the func-
tionality into the IP and TCP/UDP layers appears to be sub-
optimal from security, mobility, and multi-homing points of
view. For example, from a functional point of view, the
upper parts of IP (up from and including IPsec) apparently
belong more tightly to transport than the lower part of IP,

8Economics is a main reason why the HIP authors have considered API
backwards compatibility so important. Any change that requires all the
applications to be changed (such as IPv6) is likely to take a very long time,
due to the high cost of updating old, legacy applications. HIP aims towards
a less painful path here, allowing most applications to continue to be used
unmodified. New applications, of course, could utilise new APIs.

9The required modifications are included in recent versions of the vanilla
Linux (2.6.21 or newer) and FreeBSD (7.X series) kernels.

i.e., the routing and forwarding part. In other words, the
current division of work between the IP and transport layers
seems to make a number of network functions, including
mobility and multi-homing support, harder than necessary.
At a more fundamental level, one can question whether the
very division of work between two distinct layers, i.e., IP
and transport, makes sense at all. For example, a prominent
network architecture veteran, John Day, argues that the IP and
transport layers form a single unit that should be considered
as a single layer consisting of a number of sublayers [20].

HIP attempts to provide a partial fix for the layering
problems by rearranging some of the functionality within the
very core of TCP/IP. While doing so, it attempts to restore, in
an enhanced form, the four classical network-layer addressing
invariants, or the original characteristics of the IP addresses,
when viewed as identifiers [1]:

• Non-mutability: The source and destination identities
sent are the identities received.

• Location independence: The identities do not change
during the course of an ”association”.

• Reversibility: A return header can always be formed by
reversing the source and destination identities.

• Omnisciency: Each host knows what identities a peer
host can use to send packets to it.

In the current world, we have been forced to give up all
but reversibility; furthermore, we surmise that the only reason
reversibility has been preserved is that the Internet would stop
working without it.

Consider now Domain Name System (DNS) names. From
the practical, functional point of view, DNS names are refer-
ences to IP addresses10. As the majority of current applications
are based on some variant of the socket API, the applications
themselves (directly or within a library) resolve the DNS
names to the corresponding IP address (and other information),
and use the IP address in the socket API, to identify the
destination host (and application).

The Host Identity (HI) name space, introduced by HIP (see
Section IV-B, below), can be considered to fill an important
gap between the IP and DNS name spaces. By creating a new
inter-networking facility on top of the existing IP networks,
HIP restores the classic invariants within the identity name
space while freeing the routing system from the burden of even
minimally preserving the original IP addressing semantics.
That is, HIP allows the underlying communication layers, i.e.,
IPv4 and IPv6, to give up all but the third network-layer invari-
ant. Furthermore, if a global, Host Identity based rendezvous
service (see Section V-B) is added to the architecture, even
the third invariant can be dropped.

As a result, if HIP were universally used by all Internet
hosts, the IP addresses could become fully agile, i.e., they
could be changed whenever needed while minimally disrupting
existing or new communication associations, they could be
fully determined by the location, there would be no need to use
reversed addresses when sending traffic back to the originator,

10We are well aware of other uses of the DNS, such as SRV records [27].
However, SRV records are commonly used only with a limited number of
protocols, such as XMPP, SIP, and LDAP. Furthermore, even then the name
is eventually resolved to an IP address.

7

and there would be no need for a host application to know
what addresses other hosts need to use to reach it.

B. Basics

As mentioned above, the core of HIP lies in implementing
the so-called identifier / locator split in a particular way. As
already briefly discussed, in traditional IP networks each host
has an IP address that serves for two different purposes: it acts
both as a locator, describing the current topological location
of the host in the network graph, and as a host identifier,
describing the identity of the host, as seen by the upper layer
protocols [8]. Today, it impossible to use the same IP address
for both purposes, due to the host mobility and multi-homing
requirements.

A solution to this problem is to separate the identity and
location information from each other. HIP separates the locator
and identifier roles of IP addresses by introducing a new name
space, the Host Identity (HI) name space. In HIP, a Host
Identity is a public cryptographic key from a public-private
key-pair. A host possessing the corresponding private key can
prove the ownership of the public key, i.e., its identity. As
discussed in more detail in Section IV-A, this separation of the
identifiers and locators makes it also simpler and more secure
to handle mobility and multi-homing than what is currently
possible.

Figure 1 shows, in approximate terms, how the new HIP
sublayer is located in the current stack. On the layers above
the HIP sublayer, the locator(s) of the host need not be
known. Only the HI (or its 128-bit representation, a Host
Identity Tag, HIT, or a 32-bit local presentation, a Local
Scope Identifier, LSI) are used11. The Host Identity sublayer
maintains mappings between identities and locators. When a
mobile host changes its location, HIP is used to transfer the
information to all peer hosts. The dynamic mapping from the
identifier to locators, on other hosts, is modified to contain the
new locator information. Upper layers, e.g. applications, can
remain unaware of this change; this leads to effective division
of labour and provides for backwards compatibility.

During the connection initialisation between two HIP hosts,
a four-way handshake, a Base Exchange (see Section IV-D,
below), is run between the hosts [28]. During the exchange, the
hosts identify each other using public key cryptography and
exchange Diffie-Hellman public values. Based on these values,
a shared session key is generated. Further, the Diffie-Hellman
key is used to generate keying material for other cryptographic
operations, such as message integrity and confidentiality. Dur-
ing the Base Exchange, the hosts negotiate what cryptographic
protocols to use to protect the signalling and data messages.
As of today, the default option is to establish a pair of IPsec
Encapsulated Security Payload (ESP) Security Association
(SA) between the hosts [29]. The ESP keys are retrieved from
the generated Diffie-Hellman key and all further user data
traffic is sent as protected with the ESP SAs. However, the
HIP architecture is not limited to support only ESP. With

11Note that all the current HIP implementations still allow IP addresses to
be used above the HIP sublayer. In that case, the host and application act as
if HIP was not installed into the system.

suitable signalling extensions, some in preparation [30], it
is possible to use for protecting the user data almost any
standalone data protection protocol, such as SRTP [31] for
real-time multimedia and perhaps even data-oriented, copy-
and-forward protocols such as S/MIME [22].

Host Identity layer

Transport layer

IP layer(s)

Link layer(s)

Process

< Host ID, port >

Host ID

IP address(es)

Fig. 1. Approximate location of the HIP sublayer within the TCP/IP stack.

From an overall, functional point of view, HIP provides
the same four invariants described in Section IV-A, but with
additional functionality: (mobility, multihoming, authentica-
tion, encryption). However, since even today IP still provides
universal – even if limited – connectivity throughout the world,
the efforts on HIP have more focused on those aspects of
end-to-end connectivity that today’s IP does not provide that
well: provisions for mobile and multi-homed hosts (see Sec-
tion V-A), for baseline security [32], for middle-box support
(Section V-D), and for connectivity between the two versions
of IP, IPv4 and IPv6 (in Section V-C).

C. HITs and LSIs

When HIP is used, the Host Identity public keys are
usually not written out directly. Instead, their 128-bit long
representations, Host Identity Tags (HIT), are used in most
contexts. According to the current specifications [33], a HIT
looks like an IPv6 address with the special 28-bit prefix
2001:0010::/28, called Orchid12, followed by 100 bits taken
from a cryptographic hash of the public key. It is important to
note that embedding a cryptographic hash of the public key
to the short identifier allows one to verify that a given HIT
was derived from the given Host Identity. That is, due to the
second pre-image resistance of the used hash functions, it is
believed to be computationally unfeasible to construct a new
Host Identity that hashes to a given, existing Host Identity Tag.
Therefore, HITs are compact, secure handles to the public keys
they represent.

As described in Sections IV-D and IV-F, below, HITs are
used to identify the communication parties both in the HIP
protocol itself and in the legacy IPv6 APIs. The second pre-
image resistance property of the hash establishes implicit
channel bindings between the HIT and the underlying IPsec
or other security associations. That is, if an application uses

12The Orchid acronym stands for Overlay Routable Cryptographic Hash
IDentifiers.

8

a HIT to connect a socket, it implicitly gains assurance that
once the socket connects, the sent packets will be delivered to
the entity identified by the corresponding Host Identity, and
any received packets indeed come from that entity.

Unfortunately, in the IPv4 API the host identifiers, i.e, IP
addresses, are only 32 bits long. Hence, even if all of these 32
bits were derived from the hash of the public key, there still
would be occasional collisions. Hence, the approach taken by
HIP is to so-called Local Scope Identifiers (LSIs) in the IPv4
API [32]. These are assumed to be only locally unique; there
are also no implicit channel bindings. However, with suitable
IPsec policy expression it is still possible to create explicit
channel bindings even for LSIs. Unlike HITs, LSIs are not
sent on the wire within the HIP protocol, and have only local
scope, so they cannot be reliably used to name hosts within
the network (e.g. in access control lists).

D. Protocols and packet formats

From the protocol point of view, HIP consists of a control
protocol, a number of extensions to the control protocol, and
any number of data protocols. The control protocol consists
of the base exchange, any number of status update packets
(that are typically used to convey extension protocols), and
a three message termination handshake that allows the peer
hosts to cleanly terminate a protocol run [28]. For most
extensions, there is some flexibility which messages are used
to carry the payloads comprising the extension. For example,
multi-homing related information may be sent in three of the
initial handshake messages or in update packets. With suitable
extensions, HIP may be extended to use almost any data
protocol. However, today the only defined data protocol is
IPsec ESP [29].

DataTCP
Original IP

header

Before transport mode is applied

DataTCP
Original IP

header
UDP ESP ESP

After UDP encapsulation and transport mode is applied

IPv4

IPv4

encrypted

authenticated

Fig. 2. IPsec NAT-Traversal.

By default, the HIP control protocol is carried directly in
IPv4 and IPv6 packets, without any intervening TCP or UDP
header. However, a larger fraction of the existing IPv4 NATs
will not pass traffic with this protocol number through, or at
best will allow only one host to communicate from behind
the NAT. Therefore, work is being conducted to specify how
HIP control messages may be carried in UDP packets [34].
The basic idea there is to use UDP encapsulation identical to
IPsec IKE NAT traversal [35] [36]; see Figure 2.

However, the other aspects will differ, and since mere packet
encapsulation is not enough to allow NATted hosts to be
contacted from the Internet, the UDP encapsulation format

must be accompanied by a specification for NAT traversal
details. At the time of writing, the NAT traversal specification
is preparing for the Working Group Last Call [34].

The HIP control protocol packet format, together with an
underlying IPv4 packet, is depicted in Figure 3. The packet
consists of a fixed header that is modelled after IPv6 extension
headers. As the most important information, it also carries a
packet type field and the sender’s and receiver’s HIT. The
fixed header is followed by a variable number of payloads.
The base exchange and each extension defines what payloads
are needed and on what kind of HIP control messages the
payloads may be carried. Most (but not all) messages also
carry a cryptographic Hashed Message Authentication Code
(HMAC) and a signature in the end of the packet. The former
is meant for the peer host, which can use the Diffie-Hellman
session keys necessary to verify the HMAC. The latter is meant
for middle boxes, which typically do not have access to the
Diffie-Hellman key but may well have access to the sender’s
public key [37]. After the base exchange, where the signature
is used by the peer hosts for authentication, the signature is
typically ignored by the receiver.

Sender's Host Identity Tag (HIT)

Next header

Checksum Controls

Header length Packet type Version

Receivers's Host Identity Tag (HIT)

Padding

HIP parameter

Fig. 3. HIP control packet format.

The base exchange is depicted in Figure 4. It consists of four
messages, named by letters and numbers. The letters denote
the sender of the packet, I for initiator or R for responder. The
numbers are simply sequential. Hence, the four messages are
named as I1, R1, I2, and R2. The I1 message is a mere trigger.
It is used by the initiator to request an R1 message from the
responder. By default, any HIP host that receives an I1 packet
will blindly reply with an R1 packet; that is, the responder

9

shall not remember the exchange.

Initiator Responder

I1: HITI, HITR

R1: HITR, HITI, puzzle, {DHR, HIR, parameters}SIG

I2: HITI, HITR, {solution, DHI, HII, parameters, authenticator}SIG

R2: HITR, HITI, {authenticator}SIG

data traffic (in both directions)

Fig. 4. HIP base exchange.

Remaining stateless while responding to an I1 with an R1
protects the responder from state-space-exhausting denial-of-
service attacks, i.e., attacks similar to the infamous TCP SYN
one [38] [39]. However, as a side effect it adds flexibility to
the architecture. It does not need to be the responder itself
that replies to an I1. Hence, if there is some other means
by which the initiator may acquire a fresh R1 message, such
as a directory look up, it is perfectly fine to skip the I1/R1
exchange. As long as the host responding with an R1 has a
supply of fresh R1s from the responder, it can be any node.
This flexibility is used by some more advanced architecture
proposals basing on HIP, such as the Hi3 proposal [40]; see
Section VI-B.

The R1 message contains a cryptographic puzzle, a public
Diffie-Hellman key, and the responder’s public Host Identity
key. The Diffie-Hellman key in the R1 message allows the
initiator to compute the Diffie-Hellman session key. Hence,
when constructing the I2 message it already has the session
key and can use keys derived from it.

In order to continue with the base exchange, the initiator
has to solve the puzzle and supply the solution back to the
responder in the I2 message. The purpose of this apparently
resource-wasting method is to protect the responder from
CPU-exhausting denial-of-service attacks by enforcing the
initiator to spend CPU to solve the puzzle. Given the puzzle
solution, the responder can, with very little effort, make sure
that the puzzle has been recently generated by itself and that
is has been, with high probability, solved by the initiator and
is not a result of a puzzle posted much earlier or a puzzle
generated by someone else. That is, by verifying the puzzle
solution the responder knows that, with high probability, the
initiator has indeed used quite a lot of CPU to solve the
puzzle. This, seemingly, is enough to show the initiator’s
commitment to the communication, thereby warranting the
forthcoming CPU cycles that the responder needs to process
the rest of the I2 message. The difficulty of the puzzle can be
varied depending on the load of the responder. For example,
if the responder suspects an attack, it can post harder puzzles,
thereby limiting its load.

The I2 message is the main message in the protocol. Along

with the puzzle solution, it contains the initiator’s public
Diffie-Hellman key, the initiators public Host Identity key,
optionally encrypted with the Diffie-Hellman key, and an
authenticator showing that the I2 message has been recently
constructed by the initiator.

Once the responder has verified the puzzle, it confidently
can continue to construct the Diffie-Hellman session key, to
decrypt the initiator’s Host Identity public key (if encrypted),
and to verify the authenticator. If the verification succeeds, the
responder knows that there is out there a host that has access
to the private key corresponding to the initiators Host Identity
public key, that the host wants to initiate a HIP association
with it, and that the two hosts share a Diffie-Hellman session
key that no other node knows (unless one of the hosts has
divulged it) [41]. Given this information, the responder can
consult its policy database to determine if it wants to accept
the HIP association or not. If it does, the responder computes
an authenticator and sends it as the R2 packet to the initiator.

The details of this relatively complex cryptographic protocol
are defined in the HIP based exchange specification [28].
From the high level point of view, the HIP protocol can be
considered as a member of the SIGMA family [42] of key
exchange protocols.

E. Detailed layering

Let us now focus in more detail how the new HIP sub-
layer is wedged into the existing stack. Figure 5 depicts the
positioning of the new functionality in detail. The current IP
layer functionality is divided into those functions that are more
end-to-end (or end-to-middle) in nature, such as IPsec, and
those that are more hop-by-hop in nature, such as the actual
forwarding of datagrams. HIP is injected between these two
sets: architecturally immediately below IPsec, in practise often
functionally embedded within the IPsec SA processing [43].

Transport layer

IP layer

Link layer

IPSEC

HIP

Fragmentation

Fowarding

 v4/v6 agility

Multi-homing

Mobility

Fig. 5. New layering, with the HIP sublayer, in detail.

Now, in a communications system the main function of
packet identifiers is to allow demultiplexing. Forwarding
nodes, such as routers, use the identifiers to determine which of
the outgoing links to forward the packet to. The receiving host

10

uses the identifiers to make sure that the packet has reached its
right destination and to determine which upper layer protocol
(if any) should process the packet. In the classical IP system,
the IP address is used both by the routers to determine the
next outgoing link and by the destination system to make sure
that the packet has reached the right end host. With HIP, the
separation of the location and identity information disentangles
these two functions. Routers continue to use IP addresses to
make their forwarding decisions.

At the hosts the behaviour changes. For HIP control packets,
the source and destination HIT fields in the packet determine
the right processing context. For data packets, the receiving
host identifies (and verifies) the correct HIP association indi-
rectly, typically by first getting the correct session keys based
on the ESP Security Parameter Index (SPI) in the received
packet, and then decrypting and verifying the integrity of
the packet. Thus, the actual IP addresses that were used for
routing the packet are irrelevant after the packet has reached
the destination interface, although they may still be used in
some local access control filters if desired.

This is in stark contrast with the prevailing IP practice,
where the transport layer identifiers are created by concatenat-
ing the IP-layer identifiers (IP addresses) and the port numbers.
The main benefit of the current practice is implied security:
since the transport identifiers are bound to the actual network
locations, the transport connections get automatically bound to
the locations. That allows the routing and forwarding system
to be used as a weak form of security: binding identity to
the location allows reachability to be used as a (weak) proxy
for the identity. When HIP is used, this weak-security-by-
concatenation is replaced by strong cryptographic security,
based on the public cryptographic host identity keys.

F. Functional model

We now consider what happens underneath the applications,
in the API, kernel, and network, when a typical, existing legacy
application is configured to use HIP. Naturally, before anything
HIP-related can happen, HIP must be installed into the system
and the application(s) must be configured to use it. Today,
typically the installation requires that a pre-compiled HIP
package is installed; in most operating systems this requires
administrator privileges. As the second step, the applications
must be configured to use HIP. In most cases, there are
three alternative configuration options. The simplest but least
generic way is to configure the HITs of the peer hosts directly
into the application. For example, an IPv6-capable e-mail
application can be configured to use HIP by entering the mail
server’s HIT into the configuration field that usually contains
either a DNS name or an IP address. An IPv4-only application
could be similarly configured with an LSI if the system is
configured to securely map the LSI to a unique HIT [32].

A more transparent way is to change the mapping from
DNS names to IP addresses in a way that resolving a DNS
name returns a HIT (or an LSI), instead of an IP address,
to the application. Obviously, there are several options how
to implement that. In most UNIX-based systems the simplest
way to change the mapping is to modify the local /etc/hosts

file. Another, non-standard way is to store the HIT or LSI
into the DNS in an AAAA or an A record. The drawback of
this method is that as a result of such practise non-HIP-aware
hosts may fail in non-obvious ways. Finally, the standard way
is to store the HIT (and other information) into the new HIP
resource record [44]. That allows both HIP and non-HIP hosts
to create new connections with the target host without new
difficulties.

Once the application has got a HIT (or an LSI), it uses
it in various socket API calls. In a typical implementation,
the underlying libraries and the communication stack handles
the HIT just as if it were a vanilla IPv6 address, all the way
until the resulting packet is delivered to the IPsec module for
processing. At the IPsec level, an IPsec policy rule is used
to detect that the destination and source IP address fields in
the packet contain the Orchid prefix. (For LSIs, an explicit,
LSI-specific rule is typically required). Typically, all Orchid
packets are passed to IPsec ESP for processing13. If there are
no ESP Security Associations yet, the IPsec module requests
a suitable pair of security associations from the HIP control
functionality, which in turn creates the SAs by executing the
HIP ESP extension [29], either as a part of a base exchange
or over an existing HIP control association using update
messages.

For ESP processing, typical HIP implementations use a
non-standard variant of the ESP modes, called the BEET
mode [43]. The BEET mode can be considered as standard
transport mode that is enhanced with build-in address rewriting
capabilities. To achieve HIP functionality, at the sending end
the SA is configured so that the HITs in an outgoing packet
are converted to IP addresses. Conversely, at the receiving
end the IP addresses in the packet are discarded and, if the
packet passes integrity verification, the HITs are placed in
the packet header. As a part of this processing, it is also
possible to rewrite the IPv6 header used to carry the HITs (or
the IPv4 header carrying LSIs) into an IPv4 header carrying
IPv4 addresses (resp. IPv6 header carrying IPv6 addresses).
Between the sender and the receiver, the packet looks like a
standard IPsec ESP transport mode packet, with IP addresses
in the header, and is handled by all HIP-unaware nodes as
such.

At the receiving end, once an incoming packet has been
processed by the IPsec ESP module, the packet contains
the sender’s HIT in its source field. Since this HIT was
placed to the packet during the IPsec processing, and only
if the packet passed verification, the HIP sublayer provides
assurance to all of the upper layers that the packet was
indeed received through an IPsec Security Association that
was securely created through a cryptographic protocol where
the private key corresponding to the HIT was present. In other
words, the upper layers at the receiver end can trust in that
the Host Identity represented by the source address is indeed

13Note that if the source and destination addresses are other than Orchids,
the packet is processed as if HIP did not exist in the system at all. In that
way, all HIP enabled systems remain fully backwards compatible with non-
HIP-enabled systems.

11

valid and not a result of IP source address spoofing14.

G. Managing the HIP name space

HIP adds another name space to the existing name spaces
in the Internet. Users and developers already deal with names
such as SIP URIs and DNS names; these names are structured,
human friendly, and managed by some authority (e.g. a net-
work administrator). Protocols often deal with IP addresses;
again, these are structured, centrally allocated names. HIP
names are quite different; they are unstructured (keys or
hashes of keys), not human friendly, and not necessarily
managed by anyone (keys may be self generated). Moreover,
the bindings between HIP names and other names must be
secured somehow, if other names are used in the overall
system. We do not expect that humans will want to handle
HITs. A variety of mechanisms are available to bind other
names to HITs, including DNSSEC, SPKI/SDSI, and X.509
certificates. These techniques require some local trust anchors
in the system to secure the bindings between the other names
and HITs.

For example, users or applications may use DNS names
to refer to a server, and may not want to directly handle
HITs. Therefore, the system must be able to (securely) map
between the DNS name and a HIT that belongs to the named
host. HIP has defined resource record types that allow for
a host identity to be stored in the DNS and indexed by
domain name. DNSSEC is a technique to provide data integrity
and data origin authentication in such a scenario. Presently,
because HITs are flat and hard to store in the hierarchical
DNS, a user or application starting with a DNS name must
fetch both the host identity and the IP address in separate
calls to DNS. Applications or stacks that wait for DNS HIP
records to be checked may impose additional latency on the
session initiation. Furthermore, an application starting with a
HIT cannot use DNS to find IP addresses. Instead, researchers
have explored the use of distributed hash tables to store name
records indexed by HITs. If more than one such HIT-based
name service is deployed, an additional wrinkle is that it is
not possible to learn of the particular name service(s) in use
by the host simply by inspecting the host’s HIT. These issues
are currently being worked in the IETF HIP working group.
A preliminary study concluded that a name resolution system
that scales up to millions of mobile hosts can be constructed
for HIP.

Another cost is that HIP imposes a new management load on
hosts and enterprises (when identifiers are centrally managed)
to manage this additional name space. Key management needs
to be more carefully considered and worked out. Another
consideration is that HITs cannot be aggregated; this makes
it difficult to build access control lists with HIP names.
Also, an additional level of indirection may cause an increase
in hard-to-debug network configuration errors and failures,
which current implementations are only beginning to address
adequately.

14Obviously, for this to work the IPsec SPD needs to contain a rule that
discards any incoming, unprotected traffic containing the Orchid prefix in the
source or destination address.

H. Other costs

While HIP has generally been carefully designed to be
backwards compatible with existing applications and infras-
tructure, obviously any change may have its drawbacks or
costs; so too with HIP. In this section we briefly discuss the
most general potential costs; there certainly are others, more
situation-specific ones.

Perhaps the biggest difference to present communication
that HIP introduces is a slight delay, caused by the base
exchange, whenever starting to communicate with a new host.
This delay is mainly caused by the time taken to solve the
puzzle, to process the public key signatures, and to produce
the Diffie-Hellman public key. While the amount of time can
be somewhat reduced by using trivial puzzles and short keys,
it cannot be eliminated. One potential way to alleviate the
situation to use Lightweight HIP (LHIP), a variant of HIP
proposed by Heer [45]. However, both of these options are
clearly less secure than the baseline HIP.

A second, often mentioned drawback is the need to change
the operating system kernel; many people are understandably
concerned about this, even though the modifications are very
small, as discussed in Section IV-E. One alternative, used by
the Boeing implementation (see Section VII-A), is to divert the
traffic to user level and process all packets there. Although
this alternative has been shown to perform well for typical
Internet usage, kernel-based implementations are preferred for
high-performance, high-bandwidth usage. A complete patch
for the Bound End-to-End Tunnel (BEET) mode including
inter-family communication had been accepted to the official
Linux kernel starting from version 2.6.27.

An often cited potential drawback with HIP relates to the
so-called third party referral problem, where one host sends a
name of a second host to a third host. In practise, in a third
party referral situation the names are IP addresses and there
are three IP hosts, A, B, and C. Hosts A and B have an ongoing
connection (such as a TCP connection); therefore A knows B’s
IP address. Host A now wants to initiate a connection between
B and C by telling C to contact B. Obviously, it does that by
sending Bs IP address to C. With the IP address at hand, C is
now able to open a new connection to B. Now, as the HITs
are not routable, it is hard to open a new HIP association to
a HIP host if all that one has is a HIT. Hence, if the third-
party-referral application is a legacy one and if it imagines
to use IP addresses and uses HITs (or LSIs) instead, the
referral process may fail. We allege that the third party referral
problem is not that important nor bad in practise. Firstly, in
a NATted environment, third party referrals fail already now,
indicating that the problem may be less important than what is
commonly claimed. That is, most commonly used applications
no longer rely on third party referral working. Secondly, using
an overlay network to route HITs (see Section VI-B), it is
possible to support even legacy applications that rely on third
party referrals working.

There are some considerations related to how HIP will work
in a host where IPsec is used also for other, non-HIP purposes.
For example, both HIP and IPsec use the same SPI space
and SPI selection must be coordinated. As another example,

12

it remains an open question whether it is possible to first
convert HITs into IP addresses, then run these IP addresses
over an IPsec VPN connection. While these problems are real,
HIP is not alone with them. The current IPsec architecture
specification [5] is not too specific in explaining how a host
should behave in a situation where IPsec is applied repeatedly.

Finally, some diagnostic applications, and probably a few
other specialized ones, will not work with HIP, at least not
as intended. For example, the diagnostic tool ping can be
used with HIP, but when given a HIT it no longer tests
IP connectivity but HIP-based connectivity. Similar surprises
are likely to be detected with other diagnostic applications.
However, the fact that HITs and other IP addresses are clearly
distinguishable by the ORCHID prefix, we doubt whether
these new failure models would hamper operations in prac-
tise15.

V. MOBILITY, MULTI-HOMING, AND CONNECTIVITY

Equipped with a basic understanding of what HIP is and
how it works, we now continue to study how it, together
with a number of defined and prospective extensions, can be
used to address the problems discussed in Section III. In this
section, we first discuss basic host mobility and multi-homing
(Section V-A) and rendezvous (Section V-B), and then con-
nectivity related issues including locator agility (Section V-C),
architected NAT traversal (Section V-D), subnetwork mobility
(Section V-E), and application-level mobility (Section V-F).
The problems related to unwanted traffic, privacy, and account-
ability are left to Section VI.

A. HIP-based basic mobility and multi-homing

We first describe how HIP mobility and multi-homing
are designed to work in a non-NATted environment, and
later return to the NAT traversal design in Section V-C. As
discussed above, with HIP packet identification and routing
can be cleanly separated from each other. A host receiving
a HIP control packet (other than I1) can verify its origin
by verifying the packet signature; alternatively, the two end-
points of an active HIP association can simply verify the
message authentication code. A host receiving a data packet
can securely identify the sender through a three step process: it
first locates an ESP Security Association based on the Security
Parameter Index (SPI) carried in the packet. As the second
step, it verifies packet integrity and then decrypts the packet,
if needed. Finally, as the third step, it places into the packet the
source and destination HITs, as stored within the ESP BEET-
mode SA. Thus, the actual IP addresses that were used for
routing the packet are irrelevant after the packet has reached
the destination interface.

Hence, to support mobility and multi-homing with HIP, all
that is needed is the ability of controlling what IP addresses are
placed in outgoing packets. As the addresses will be ignored
by the recipient in any case, the sender may change the source
address at will; for the destination address, however, it must

15At the time of writing, the use of HIP underneath an application that does
STUN/ICE has not been tested yet.

know the address or addresses that the receiver is currently
being able to receive packets at.

The HIP mobility and multi-homing extension [46], [47]
defines a Locator parameter that contains the current IP
address(es) of the sending entity. For example, when the
mobile host changes its location and therefore IP address,
it generates a HIP control packet with one or more Locator
parameters, protects the packets integrity, and sends the packet
to its currently active peer hosts. Note that the IP version of
the locators may vary; it is even possible to use both IPv4
and IPv6 addresses simultaneously, and make a decision of
the IP version used on outgoing IP packets depending on a
local policy.

When the host receives a Locator parameter over an active
HIP association, it needs to verify the reachability of the IP
address(es) that are included in the parameter. Reachability
verification is needed to avoid accepting non-functional and
falsified updates16. The verification can be skipped in special
circumstances, for example, when the peer host knows that
the network screens all address updates and passes only valid
ones.

The HIP mobility and multi-homing specification [46] de-
scribes also an enhancement to the standard location update
procedure. The Credit-Based Authorisation (CBA) process
allows the peer host to use the new locator before the reach-
ability test has passed. To prevent flooding attacks, the peer
host calculates a credit based on the amount of data received
from the mobile host. When sending to one or more addresses
whose reachability status is unknown, the host may send, at
maximum, as much data as it has previously received from
the mobile host, i.e., up to the credit limit. Naturally, this
limitation is lifted as soon as the reachability status of the
address in question becomes verified. This method can be used
to enhance performance of certain real-time applications. For
example, voice-over-IP applications do suffer from long breaks
in a connection; with this method, the break can be made much
shorter or eliminated.

When handovers are made in the so-called break-before-
make manner, all connectivity can be lost for a while. HIP
supports also make-before-break style handovers, enhancing
the handover performance significantly while the handover can
be made even without any packet loss.

B. Facilitating rendezvous

While the mobility and multi-homing extension specifies
how two hosts that already have a HIP association can ex-
change locator information and change the destination address
in outgoing traffic, there remains another mobility-related
problem: rendezvous. When another host wants to make a
contact with a mobile host, when two mobile hosts have
moved simultaneously and have both stale peer address infor-
mation, or whenever the destination hosts current IP address
is unknown, e.g. since it is dynamic or kept private (see
Section VI-B), there needs to be an external means to send
packets to the host whose current locator is not known. In

16Note that the peer host does not need to be completely trusted. Hence, it
is plausible that it may lie, for example, to launch a flooding attack [48].

13

the Mobile IP world, this function is provided by the Home
Agent, which forwards any messages sent to the mobile hosts
home address to the mobile host itself.

In the HIP mobility architecture a similar function is pro-
vided by a Rendezvous server. Like a Mobile IP home agent,
a HIP Rendezvous server tracks the IP addresses at which
hosts are reachable and forwards packets received thereto.
Unlike a home agent, a HIP rendezvous server forwards only
HIP signalling packets (by default only the first packet of
a base exchange), and the rest of the base exchange, as
well as all subsequent communications, proceed over a direct
path between the host and its peer. Furthermore, a HIP host
may have more than one rendezvous server; it may also
dynamically change the set of rendezvous servers that is able
to serve it.

In HIP terms, a Rendezvous Server is simply a HIP host
that knows another HIP host’s current locator and is willing
to forward I1 packets (and possibly other HIP control packets)
to that host. In theory, any HIP host could act as a rendezvous
server for any of its active peer hosts, as it already knows the
peer host’s locator or locators. However, in practical terms it
is expected that there will be a number of stationary hosts,
located in the public Internet, providing rendezvous as a
service.

The rendezvous service is defined by means of two HIP
extensions. First, the generic service registration extension [49]
is used by a rendezvous server and a prospective client to
agree on the existence and usage of the service in the first
place. Second, the rendezvous service extension [50] defines
the terms of the specific service. Both of the specifications are
quite simple and straightforward. The reason there are two
documents, and not only one, is reusability: the registration
extension can be used to define also other services besides the
rendezvous service.

The HIP rendezvous server is very simple. When processing
incoming HIP control packets, if the server receives a packet
that does not contain any of its own HITs, the server consults
its current HIT-to-locator mapping table. If there is a match,
the packet is forwarded to the locator listed in the table. To
facilitate tracking, the packet is augmented with the original
addresses from the incoming packet. However, what is note-
worthy here is that the IP addresses in the incoming packet
are not used for any demultiplexing decisions; they are simply
copied to a new HIP parameter, which is then added to the
packet. Hence, the rendezvous server does not need a pool of
IP addresses, in the way a Mobile IP Home Agent needs. As
each mobile host is identified by the HIT and not the address,
the destination address in the incoming packet is transient.

C. Mobility between addressing realms and through NATs

As described earlier, HIP supports mobility between and
within different IP address realms, i.e., both within and be-
tween IPv4 and IPv6 networks. However, all addresses in
the scenarios above have been assumed to be drawn from
the public address base, i.e., we have implicitly assumed that
the (functional) addresses in the Locator payload are routable.
As of today, the mobility and multi-homing specification [46]

does not describe how one can be mobile when the host has
addresses only from a private address space, i.e. when it is
behind a legacy NAT device. However, there is ongoing work
to define how NATs can be enhanced to understand HIP and
how HIP can be enhanced to pass legacy NATs.

From a HIP point of view, there may be two types of NATs:
HIP-unaware legacy NATs, and HIP-aware NATs. We first
consider the current engineering work to address the legacy
problem, and then turn our attention to how to engineer NATs
into the overall architecture.

At the time of this writing, the HIP Working Group at the
IETF seems to be converging on a solution for how HIP
should work over legacy NATs. The main requirement is
that the HIP control packets and ESP protected data traffic
should be carried embedded in UDP packets in the same
way IPsec IKE and ESP traffic is currently embedded in
the IPsec NAT traversal solution [36]. There seems also to
be agreement that to initiate sessions through a NAT, a HIP
relay server (similar to the rendezvous server) can be used to
forward initial packets through the NATs and that the ICE [6]
methodology (originally designed for SIP) will be used to
collect the so-called candidate address sets and to pick the
most appropriate address pair for the actual control and data
traffic. It seems inevitable that ICE will need, at minimum,
some small modifications as in the HIP case; the UDP packets
will carry ESP, which in turn carry the actual data traffic, while
in the case of SIP-related ICE use, the UDP packets may also
carry plain data traffic17. In some environments, it may be
desirable to use plain ESP instead of UDP-encapsulated ESP in
the case there are no NATs on the path or the NATs happen to
support ESP. However, such an option may also have problems
running over firewalls even in non-NATted environments, and
is likely to complicate the address pair selection algorithms
somewhat.

After some discussion, the design team working on HIP
NAT traversal agreed to reuse ICE as closely as it can be
reused from its current support for SIP; i.e., through using
STUN [51] and TURN [52] to collect the candidate addresses
and assist in relaying, and to use STUN to perform the address
probing [53]. Some observers, including the lead author of this
article, argued that the solution should use ICE methodology
but encode all information in HIP parameters, i.e., integrated
ICE tightly to HIP. That is, instead of using STUN and TURN,
the HIP rendezvous servers would offer services similar to
the service provided by STUN and TURN [34]. According
to our initial analysis, it will be simpler, both in the terms
of exact specifications and especially for implementation, to
follow the latter path. In the former case, the TURN server,
HIP rendezvous server, and the HIP host side implementation
all need to be modified; at the host side integrating the
STUN/TURN library to a HIP daemon can be a quite complex
task. In the latter case, it suffices to modify the HIP rendezvous
server and the HIP host side implementation. Furthermore,

17There are a few specific issues here: 1) need for a method to signal the
use of ESP, 2) a decision on how to handle upper layer checksums, as NATs
are unable to rewrite them within ESP encapsulation, and 3) if SIP is used
on the top of HIP, the SIP messages will most probably need to carry HITs
in addition to IP addresses.

14

these modifications appear relatively simple.
Anyway, the design seems to have converged now on

reusing ICE, STUN, and TURN as closely as possible. Once
the candidate address collection and address pair selection
process is there and the candidate addresses are exchanged
in HIP Locator parameters, the whole matter of mobility with
NAT traversal becomes trivial. To implement that, all that is
needed is for the mobile host to collect candidate addresses
after each movement, to send the addresses to its peer hosts
(using already existing mechanisms), and probe what address
pair is the best one, using the already existing mechanisms,
enhanced with algorithmic wisdom from ICE.

D. Architected NAT traversal

We now turn out attention into how to make NATs an
integral part of the architecture. In contrast to the legacy NATs,
whose traversal mechanism could be viewed as something of
a hack as it requires both UDP encapsulation and explicit
support nodes at the un-NATted side of the network, integrated
NATs are architecturally cleaner; they pass all data protocols,
including ESP, and do not require external support nodes.
One such approach is presented in the SPINAT proposal [54].
A SPINAT-based NAT device is HIP-aware and can take
advantage of the passing-by HIP control packets, using them to
learn the necessary details for demultiplexing data protocols.
Additionally, a SPINAT device must also implement the HIP
rendezvous functionality, acting as a rendezvous server for all
hosts that are behind it.

In practice, a SPINAT device uses information from the
HIP Base Exchange and UPDATE packets to determine the
IP addresses, HITs, and SPI values (or other contextual identi-
fiers) in the data protocol18. With this information, the SPINAT
device can do required address translations between public and
private address spaces, mapping several HIP identities (and
corresponding data protocols) to a single external IP address.

With SPINAT, a HIP host residing behind it learns directly
the mapped address as a part of rendezvous registration.
Furthermore, there is no difference between a mapped address,
as identified by STUN, and an allocated address, as offered by
TURN. They are both replaced by one shared external address,
the data protocols being explicitly mapped with the help of the
information from the HIP control messages.

E. Subnetwork mobility

So far we have only considered mobility in the terms of
mobile hosts. Now we turn our attention towards mobility
at other granularity levels, first considering how HIP can
be used to implement subnetwork mobility and then, in the
next subsection, how application-level mobility can be imple-
mented. A key feature to both of these is delegation. That
is, the use of public cryptographic keys as identifiers adds
cryptographically secure delegation, as a primary element,

18IP addresses are needed to identify the context. HITs are needed to
forward HIP signalling packets, such as Updates. SPIs are needed to forward
ESP-protected data packets. When other data protocols but ESP are used, there
needs to be other sufficient context-setting identifiers to allow forwarding to
work.

into the architecture. That, in turn, can be used to implement
different forms of proxied functionality; for example, subnet
mobility, allowing an intelligent network to signal mobility on
mobile hosts or subnets behalf, and allowing application level
service delegation.

The basic idea behind cryptographic delegation is simple,
but the result is powerful [55]. When a principal (e.g., a
host), identified by a public key, wants to delegate some
rights (such as access rights) to another principal, identified
by another public key, all that is needed that the former signs
a statement indicating that the latter is authorised to perform
the operations needing the rights. The statement must include
the delegate’s public key to identify the delegate and it must
be properly signed by the delegator’s private key so that its
validity can be verified. Furthermore, the delegator must itself
possess the delegated right. Typically, but not necessarily,
such delegations form an implicit loop where authority flows
from a resource possessor through some intermediates to the
prospective resource consumer, and from there back to the
resource owner [55].

In the context of mobility and mobile sub-networks, dele-
gation can be used to delegate the actual act of sending HIP
control messages that contain new locators from the individual
mobile hosts to a mobile router, and further from the mobile
router to some infrastructure node at the fixed network side.

Figure 6 illustrates the basic idea. First, individual mobile
hosts in a mobile network delegate, to a mobile router, the
right to inform their peer hosts about their location. At this
stage the mobile router could send HIP signalling messages
on the behalf of all the hosts behind it, but such a practise
would use quite much capacity at the air interface. Hence, in
the next step, the mobile router further delegates that right to
a router (or another infrastructure node) within the fixed part
of the network (illustrated as a cloud). Once the fixed side
router learns that the mobile subnetwork has moved, it will
send Updates to the relevant peer hosts.

Fig. 6. A moving network scenario.

As an additional optimisation, if the underlying IP-layer

15

router mobility functionality is arranged in such a way that the
fixed-side router gets directly informed whenever the mobile
router changes its point of attachment, it becomes possible for
the fixed-side router to send the mobility messages directly
to the corresponding hosts of all mobile hosts within the
mobile subnetwork, without any signalling at all over the air
interface. Hence, for HIP-based mobility signalling, no HIP-
related messages need to be transmitted over radio at mobility
events. On the other hand, whenever a new host joins the
mobile network, a few messages are needed to establish the
delegation.

F. Application-level mobility

Another area where delegation can be applied to are ap-
plications and services [56]. As illustrated in Figure 7, Host
Identities can be allocated to abstract services (leftmost box)
and service instances in addition to physical hosts. With
that kind of arrangement, using suitable service resolution
infrastructure, a client application can ask for a connection
to the abstract service, using the HIT assigned to the abstract
service and get delegated and redirected to one of the service
instances. Furthermore, for host mobility, the signalling right
for mobility signalling can be further delegated from the
service instances to the physical node,thereby allowing host
mobility to securely update the clients understanding of the
locations of the service instances.

Service

HITS

Physical host (computer) HITH

Service Instance

HITSI1

Service Instance

HITSI2

delegation

Fig. 7. Using abstract hosts as a base for service-level names.

VI. PRIVACY, ACCOUNTABILITY, AND UNWANTED TRAFFIC

A. Privacy and accountability

The base use of public cryptographic keys for host iden-
tification is clearly a means that enhances accountability. At
the same time, it can endanger privacy. HIP tries to approach
a balance, allowing both enhanced accountability and privacy.
Naturally, achieving such a balance is tricky, and it remains
to be seen whether the mechanisms currently built-in and
proposed are sufficient. In HIP, the Host Identity public keys
may be anonymous in the sense they do not need to be
registered anywhere. For example, a privacy conscious host
could create a multitude of key pairs and identify itself through
a different key to each web site during a surfing session. Were
this combined with dynamically changing IP addresses, the
web sites could not correlate the activity through lower layer
identifiers; however, anything identity-revealing in HTTP, such
as cookies, could still be used, of course.

Unfortunately, while using multiple identities and changing
addresses allows one to preserve privacy towards remote
peer hosts, that is not sufficient to remain anonymous or
pseudonymous towards the network. The network nodes close
to the host could easily correlate the public keys over multiple
IP addresses, determining which traffic flows belong to which
host, with high probability. Encrypting the Host Identity key
in the I2 packet is not sufficient to defeat such tracking, as
the HITs, present in all control packets, can be easily used
instead.

To alleviate the situation, a few years ago we proposed a
so-called BLIND extension to HIP [25]. The basic idea is
simple: instead of sending plain HITs in control packets, one
hashes the HIT with a random number and sends the hash
result and the random number in the initial control packets.
Once the connection has been established, the actual HIT can
be revealed to the responder. Alternatively, if the responder
has only a limited number of HITs that it accepts connections
from, it can try each of them in turn to see if the incoming
connection is from a trusted peer host.

The BLIND approach was implemented and simultaneously
enhanced by Takkinen [26]. Besides using BLIND, the ap-
proach also uses identifier sequences [57]. That is, they replace
all constant, easily traceable identifiers, in the HIP control
protocol and in the data protocol below the encryption layer,
with pseudo-random sequences of identifiers. The peer hosts
derive the seeds for the pseudo-random number generator from
the HIP Diffie-Hellman session key. While the exact details
of their approach fall beyond the scope of this paper, the
result appears to provide a high level of privacy towards all
eavesdropping third parties while still allowing the peer hosts
to communicate efficiently and securely.

Altogether, it looks like that while the exact details of
a comprehensive, HIP-based privacy and accountability ap-
proach remains to be defined, the pieces of existing work
clearly indicate that it is possible to simultaneously enhance
both privacy and accountability through clever use of HIP-
based mechanisms.

B. Reducing unwanted traffic

As we discussed in Section III-D, there are two oppor-
tunities in the HIP design that allow the fundamental root
causes of unwanted traffic to be affected. Firstly, we can
change the architecture so that the recipient names are either
not immediately accessible to the prospective senders or by
requiring the recipient’s consent before the network delivers
any packet to the recipient. Secondly, we can attempt to raise
the marginal cost of sending packets or reduce the marginal
cost of receiving packets.

In the HIP context, we can consider the base exchange to
employ the latter approach to defeat state space and CPU ex-
hausting denial of service attacks. Using the former approach
requires more changes; one possible way might be what we
have formerly proposed in the Hi3 overlay architecture [58].
The basic idea is to hide recipients IP addresses and to require
explicit consent from the recipients before a sender can use
the addresses as destinations for sending traffic to.

16

From an architectural point of view, overlays similar to
Hi3 create an additional routing layer on top of the IP layer.
Other overlays aiming at added protection, such as SOS by
Keromytis et al. [59] or k-anonymous overlays by Wang et
al. [60], work basically in the same way.

An important aspect in overlay networks is that they
change the naming structure. In more primitive cases, they
merely replace the current IP addressing structure with another
destination-oriented name space19. However, at the same time
they may make denial of service attacks harder by dispersing
the interface, i.e., instead of choking a single target host the
potential attacker must now flood the whole overlay system,
which may consist of thousands or millions of nodes. That
increases the overall cost of sending by introducing artificial
costs to force the participating nodes to play by the rules.
The more advanced overlays further change the rules by
changing the naming focus from hosts and locations to pieces
of information.

The basic Hi3 setting is illustrated in Figure 8. The network
consists of two planes, a data plane that is a plain IP-based
router network, with HIP-enabled firewalls located at strategic
points, and a control plane that is implemented as an overlay
on top of the data plane. In practise, the control plane consists
of enhanced HIP rendezvous servers that typically synchronise
location information either partially or fully between each
other.

As should be apparent by now, HIP-enabled firewalls can
authenticate passing HIP base exchange and update packets,
and punch holes for IPsec ESP traffic selectively [58]. In the
Hi3 architecture all servers are located behind HIP-enabled
firewalls. To become accessible, the servers must register to
the rendezvous infrastructure, creating a binding between the
server’s identity (ID) and the prospective locators (R). While
registering, the servers may also cache a number of pre-
computed R1 packets at the rendezvous infrastructure.

rendezvous
infrastructure

ID LOC
I1

R1 I2

R2

Fig. 8. Hi3 architecture.

When a client wants to make a contact with a server, it sends
the first HIP base exchange message, I1, as usual. However,
this packet cannot be sent to the server, for two reasons. Firstly,
the client will not know the server’s IP address. Secondly, even

19With destination-oriented name spaces we denote architectural practises
where the destinations are identified. In the more advanced overlay struc-
tures the name space may become sender-oriented, e.g., along the recent
publish/subscribe thinking. However, such practises fall beyond the scope of
this paper.

if it knew one, an intervening firewall would drop the packet.
Hence, the only option is to send the packet to the rendezvous
infrastructure. The infrastructure looks up a cached R1 packet,
if it has one, and passes it to the client (otherwise it needs
to pass the packet to the server, which is undesirable). The
client solves the puzzle, in the usual way, and sends an I2
packet, again to the rendezvous infrastructure. The receiving
node within the infrastructure verifies that the puzzle has
been correctly solved and, if so, passes the I2 packet to the
server. The firewall will pass the packet as it is coming from
the infrastructure. At this point, the server can verify the
clients identity and determine if the client is authorised to
establish a HIP association. Hence, if and only if the client
can be positively identified and has proper authority, the server
responds to the client with an R2 packet. The R2 packet
can either be sent directly to the client if it will pass the
firewalls anyway, or it may be necessary to direct it through
the infrastructure, thereby indirectly triggering hole punching
at the firewall. Finally, the actual data traffic traverses directly
through the data plane, through the firewalls.

The result of this arrangement is that only authorised clients
will ever learn the server’s IP address. Furthermore, if an IP
address is still revealed and used to launch a traffic-based
denial-of-service attack against the server or its network, the
firewall will stop most of the traffic, as the packets would
be arriving with unauthorised packet identifiers. In case the
firewall itself becomes congested, remaining legitimate traffic
can be redirected through other firewalls, using the HIP
mobility and multi-homing extension.

In summary, the Hi3 proposal introduces one particular way
to make certain types of denial of service attacks harder than
they are today, by making IP addresses less accessible, without
compromising legitimate connectivity or data traffic efficiency.

VII. MATURITY STATUS

So far we have described the HIP architecture, basic de-
sign, a number of extensions, and discussed how they can
or possibly could be used to alleviate a number of hard
problems in the present Internet. We now turn our focus more
to the present, and describe the current standardisation and
implementation status. All basic research and development for
the first usable version of HIP is ready. There are three open
source implementations, by Ericsson Research Nomadic Lab,
Helsinki Institute for Information Technology (HIIT) [61], and
the OpenHIP project. These all are mature for experimental
use, differing on used platforms and supported extensions.
Today, HIP is used by a few people on a daily basis, and
in daily production use at one Boeing airplane assembly
factory. RFCs 5201-5207 were published during 2008 and HIP
implementations were updated according to the specifications.

A. Usage of HIP today

Individual researchers at Ericsson, HIIT, and Boeing use
HIP in their everyday life, mostly using Linux laptops to
access specific HIP-enabled services, such as e-mail. Most of
their traffic still flows over vanilla IPv4, though, with HIP

17

being used only for the few services where the servers are
HIP-enabled, too.

Two major government organisations in Europe are se-
riously considering adopting HIP for their internal use 20.
However, at the time of writing (Spring 2009), neither of them
have made their decisions. A number of additional, mainly
governmental organisations have shown initial interest. The
main reason for these organisations being interested seems to
be the combination of baseline security and flexible mobility,
where the mobility support allows one to use different access
networks at the same time.

The Boeing Company has been experimenting with HIP
as a component of an overall Secure Mobile Architecture
(SMA) [62] in its enterprise network. Boeing’s SMA im-
plementation integrates HIP with the company’s public-key
infrastructure (PKI) and Lightweight Directory Access Pro-
tocol (LDAP) back-end, as well as with location-enabled
network services (LENS) that can identify the location of
a wireless device through triangulation and signal strength
measurements [63]. The SMA architecture responds to Boeing
enterprise needs to better secure a de-perimeterised network
environment, as well as to Federal Aviation Administration
(FAA) requirements that every step in the process of building
an airplane be documented with the individual and equip-
ment used [64]. HIP underpins the SMA architecture, and
the identifiers in use in the network include machine (tool)
host identifiers as well as temporary host identifiers linked
to employee smart badges that are presented as part of the
network log-in process.

Boeing has deployed an SMA pilot in its Everett, WA
manufacturing facility. The architecture allows for network-
based policy enforcement using Endboxes that can limit net-
work connectivity using cryptographic identity rather than
IP or MAC addresses. Complex trust relationships between
contractors, employees, tools, and the enterprise network can
be reflected in the network policy. One pilot deployment has
been to secure the wireless network between the Boeing’s 777
”crawlers” and their ”controllers” (part of the implementation
of the moving assembly line for the 777 aircraft) [63].

At the IETF, in the Peer-to-Peer SIP (P2PSIP) working
group there are proposals by two independent organisations
(Avaya and HIIT) to use HIP as a connectivity and security
platform [65] [66]. The basic idea in these approaches is to
apply HIP’s ability to separate control and data traffic into
different planes, using a distributed, peer-to-peer rendezvous
service to establish HIP associations and to carry SIP packets,
while running the actual data traffic directly over IP networks.
The attractive features of HIP here seem to be opportunistic
and leap-of-faith [57] security, ability to work through NATs,
seamless support for mobility and multi-homing, and the abil-
ity to pass control traffic through an overlay-like rendezvous
structure.

20One of the authors has knowledge of this fact directly. However, at
the time of this writing no contracts have been written and the prospective
organisations do not want their identity to be revealed.

B. Standardisation situation

The HIP architecture document was published as
RFC 4423 [1] in 2006. All the base protocol documents
were published in 2008. The documents define the base
exchange [28], using ESP transport format with HIP [29], the
protocols and details for end-host mobility and multi-homing
with HIP [46], the registration extension used in announcing
and requesting HIP-based services [49], the rendezvous
extension needed to use rendezvous services [50], HIP
Domain Name System (DNS) extensions [44], and the details
of using the HIP with legacy applications [32]. Additionally,
a HIP Research Group at the Internet Research Task Force
(IRTF) published a document specifying the issues related to
NAT and firewall traversal [67].

After publication of the base RFCs, the HIP Working
Group has been re-charted to focus on details for NAT
traversal [34], native API [68], HIP-based overlay networks
(HIP-BONE) [69], and carrying certificates in the HIP base
exchange [70]. Several research drafts, such as the use of
distributed hash tables (DHTs) for HIT-based lookups and a
HIP experiment report [71] are being progressed at the HIP
Research Group at IRTF.

The discussions of the HIP specifications at the IESG have
increased the interest of individual IESG members to consider
advancing HIP from its current experimental track to the
standards track. Discussions on advancing HIP to Proposed
Standard status commenced following the 74th IETF meeting
(March 2009).

VIII. CONCLUSIONS

In this paper, we have discussed the Host Identity Protocol
and architecture, and shown how it can be used to provide agile
mobility and multi-homing over IPv4 and IPv6 networks, and
how it can provide for enhanced privacy, traffic attribution,
and protection from certain forms of unwanted traffic.

From an architectural point of view, the HIP architecture has
been designed to restore the classical inter-networking invari-
ants, allowing hosts to interconnect in the current immensely
complex communication environment with IPv4, IPv6, NATs,
and other middle boxes. HIP provides built-in, architected
support for mobility, multi-homing (including multi-access),
and baseline security. It enhances the IP architecture by
introducing a Host Identity (HI) name space roughly between
the IP layer and the transport protocols.

Beside the basic advantage of integrated mobility, multi-
homing, and security support, HIP provides for a number
of potential architectural extensions. The inherent delegation
capability can be used to implement subnetwork-level mobility
and multi-homing, as well as delegable application names.
The architecture allows control traffic to be easily separated
from data traffic, providing for enhanced protection against
unwanted traffic.

At the time of this writing (Spring 2009), the HIP exper-
imental IETF RFCs are being considered for promotion to
standards-track. The protocol is used daily by a number of
researchers and other early adopters. A few major govern-
mental organisations in Europe are seriously considering the

18

suitability of HIP for their internal use. The next step for HIP
is to gain enough experimental experience with the approach
and to evaluate whether its actual deployment will stand up to
the architectural promise that it provides.

ACKNOWLEDGEMENTS

We want to thank Börje Ohlman and Jan Höller for their
constructive comments on an early version of this paper.
Mikko Särelä kindly helped to proofread an early version of
the paper. Christian Vogt, Tobias Heer, and Martti Mäntylä
provided numerous good comments that allowed us to improve
the presentation. Peter Schoo provided encouragement and
support throughout the whole writing process, without which
this article would not have taken place.

REFERENCES

[1] R. Moskowitz and P. Nikander, “Host Identity Protocol
architecture,” IETF RFC 4423, May 2006. [Online]. Available:
http://www.ietf.org/rfc/rfc4423.txt

[2] A. Gurtov, Host Identity Protocol (HIP): Towards the Secure Mobile
Internet. Wiley and Sons, 2008.

[3] C. Perkins, “IP mobility support for IPv4,” IETF, RFC 3334, Aug.
2002. [Online]. Available: http://tools.ietf.org/html/rfc3344

[4] C. Perkins, P. Calhoun, and J. Bharatia, “Mobile IPv4 challenge/response
extensions (revised),” IETF RFC 4721, Jan. 2007. [Online]. Available:
http://www.ietf.org/rfc/rfc4721.txt

[5] S. Kent and K. Seo, “Security Architecture for the Internet Protocol,”
RFC 4301 (Proposed Standard), Dec. 2005. [Online]. Available:
http://www.ietf.org/rfc/rfc4301.txt

[6] J. Rosenberg, “Interactive Connectivity Establishment (ICE): A
Protocol for Network Address Translator (NAT) Traversal for
Offer/Answer Protocols.” Oct. 2007, work in progress, Expires in May,
2008. [Online]. Available: http://www.ietf.org/internet-drafts/draft-ietf-
mmusic-ice-19.txt

[7] C. Huitema, “Teredo: Tunneling IPv6 over UDP through Network
Address Translations (NATs),” IETF RFC 4380, Feb. 2006. [Online].
Available: http://www.rfc-editor.org/rfc/rfc4380.txt

[8] J. Chiappa, “Endpoints and Endpoint Names: A Proposed
Enhancement to the Internet Architecture.” 1999. [Online]. Available:
http://ana.lcs.mit.edu/ jnc/tech/endpoints.txt

[9] C. De Launois and M. Bagnulo, “The paths toward IPv6 multihoming,”
IEEE Communications Surveys and Tutorials, vol. 8, no. 2, pp. 38–51,
2006.

[10] D. Le, X. Fu, and D. Hogrefe, “A review of mobility support paradigms
for the Internet,” IEEE Communications Surveys and Tutorials, vol. 8,
no. 2, pp. 38–51, 2006.

[11] D. Clark, “Application design and the end-to-end arguments,” May
2007. [Online]. Available: http://google.com

[12] B. Carpenter, “Internet transparency,” IETF RFC 2775, Feb. 2000.
[Online]. Available: http://www.rfc-editor.org/rfc/rfc2775.txt

[13] P. Srisuresh and M. Holdrege, “IP Network Address Translator (NAT)
terminology and considerations,” IETF RFC 2663, Aug. 1999. [Online].
Available: http://www.rfc-editor.org/rfc/rfc2663.txt

[14] G. Tsirtsis and P. Srisuresh, “Network Address Translation - Protocol
Translation (NAT-PT),” IETF RFC 2766, Feb. 2000. [Online]. Available:
http://www.rfc-editor.org/rfc/rfc2766.txt

[15] C. Aoun and E. Davies, “Reasons to move the Network Address
Translator - Protocol Translator (NAT-PT) to historic status,”
IETF RFC 4966, Jul. 2007. [Online]. Available: http://www.rfc-
editor.org/rfc/rfc4966.txt

[16] Wikipedia, “Naming collision,” Oct. 2007. [Online]. Available:
http://en.wikipedia.org/wiki/Naming collision

[17] P. Sathyanathan, “Interprocedural dataflow analysis - alias analysis,”
Ph.D. dissertation, Stanford University, Computer Systems Laboratory,
Jun. 2001.

[18] T. Harrison, C. Williams, W. Mackrell, and R. Bunt, “Mobile multicast
(MoM) protocol: multicast support for mobile hosts,” in Proceedings of
the Third Annual ACM/IEEE International Conference on Computing
and Networking (MOBICOM’97), 1997, pp. 151–160.

[19] Z. Kovacshazi and R. Vida, “Host identity specific multicast,” in Proc.
of the International Conference on Networking and Services (ICNS’07),
2007, pp. 1–9.

[20] J. Day, “Patterns in network architecture: A return to fundamentals,”
Mar. 2008.

[21] B. LaMacchia, “Security Attacks and Defences,” Jan. 2005,
presentation at 10th Meeting of IFIP WG. [Online].
Available: http://www.laas.fr/IFIPWG/Workshop&Meetings/47/WS/08-
LaMacchia.pdf

[22] B. Ramsdell, “Secure/Multipurpose Internet Mail Extensions (S/MIME)
version 3.1 message specification,” IETF RFC 3851, Jul. 2004.
[Online]. Available: http://www.ietf.org/rfc/rfc3851.txt

[23] D. Solove, The Digital Person: Technology and Privacy in the Informa-
tion Age. New York University Press, Feb. 2004.

[24] A. Odlyzko, “Privacy, economics, and price discrimination on the
internet,” in Proceedings of the Fifth International Conference on
Electronic Commerce. New York:ACM Press, 2003, pp. 355–366.
[Online]. Available: htpp;//www.dtc.umn.edu/ odlyzko/doc/eworld.html

[25] J. Ylitalo and P. Nikander, “BLIND: A complete identity protection
framework for end-points,” in Proc. of the Twelfth International Work-
shop on Security Protocols, Apr. 2004.

[26] L. Takkinen, “Host Identity Protocol privacy management,” Master’s
thesis, Helsinki University of Technology, Telecommunications Software
and Multimedia Laboratory, 2006.

[27] A. Gulbrandsen, P. Vixie, and L. Esibov, “A DNS RR for specifying
the location of services (DNS SRV),” IETF RFC 2782, Feb. 2000.
[Online]. Available: http://www.ietf.org/rfc/rfc2782.txt

[28] R. Moskowitz, P. Nikander, P. Jokela, and T. Henderson, “Experimental
Host Identity Protocol (HIP),” IETF RFC 5201, Apr. 2008.

[29] P. Jokela, R. Moskowitz, and P. Nikander, “Using the Encapsulating
Security Payload (ESP) Transport Format with the Host Identity
Protocol (HIP),” IETF RFC 5202, Mar. 2008. [Online]. Available:
http://tools.ietf.org/html/rfc5202

[30] H. Tschofenig, M. Shanmugam, and F. Muenz, “Using SRTP transport
format with HIP: draft-tschofenig-hiprg-hip-srtp-02,” Mar. 2006, work
in progress. Expires in September, 2006.

[31] M. Baugher, D. A. McGrew, M. Naslund, E. Carrara, and K. Norrman,
“The secure real-time transport protocol (SRTP),” IETF, RFC 3711,
Mar. 2004. [Online]. Available: http://www.ietf.org/rfc/rfc3711.txt

[32] T. R. Henderson, P. Nikander, and M. Komu, “Using the Host Identity
Protocol with legacy applications,” IETF RFC 5338, Sep. 2008.
[Online]. Available: http://tools.ietf.org/html/rfc5338.txt

[33] P. Nikander, J. Laganier, and F. Dupont, “An IPv6 prefix for overlay
routable cryptographic hash identifiers (ORCHID),” IETF, RFC 4843,
Apr. 2007. [Online]. Available: http://www.ietf.org/rfc/rfc4843.txt

[34] M. Komu, T. Henderson, H. Tschofenig, J. Melen, and A. Keranen,
“Basic HIP Extensions for Traversal of Network Address Translators,”
Mar. 2009, work in progress.

[35] T. Kivinen, B. Swander, A. Huttunen, and V. Volpe, “Negotiation
of NAT-traversal in the IKE,” IETF RFC 3947, Jan. 2005. [Online].
Available: http://tools.ietf.org/html/rfc3947.txt

[36] A. Huttunen, B. Swander, V. Volpe, L. DiBurro, and M. Stenberg,
“UDP encapsulation of IPsec ESP packets,” Internet Engineering Task
Force, RFC 3948, Jan. 2005. [Online]. Available: http://www.rfc-
editor.org/rfc/rfc3948.txt

[37] H. Tschofenig, M. Shanmugam, and M. Stiemerling, “Traversing HIP-
aware NATs and firewalls: Problem statement and requirements: draft-
tschofenig-hiprg-hip-natfw-traversal-06,” Jul. 2007, work in progress.
Expires in January, 2008.

[38] C. Schuba, I. Krsul, M. Kuhn, E. Spafford, A. Sundaram, and D. Zam-
boni, “Analysis of a denial of service attack on TCP,” in Proc. of the
IEEE Symposium on Security and Privacy, 1997.

[39] W. Eddy, “TCP SYN flooding attacks and common mitigations,”
Internet Engineering Task Force, RFC 4987, Aug. 2007. [Online].
Available: http://www.ietf.org/rfc/rfc4987.txt

[40] P. Nikander, J. Arkko, and B. Ohlman, “Host identity indirection
infrastructure (Hi3),” in Proc. of The Second Swedish National Computer
Networking Workshop 2004 (SNCNW2004), Karlstad, Sweden, Nov.
2004.

[41] T. Aura, A. Nagarajan, and A. Gurtov, “Analysis of the HIP base
exchange protocol,” in Proc. of the Tenth Australasian Conference in
Information Security and Privacy. Brisbane, Australia. Springer, Jul.
2005, pp. 481–493.

[42] H. Krawczyk, “SIGMA: The ’SIGn-and-MAc’ approach to authenticated
Diffie-Hellman and its use in the IKE-protocols.” in CRYPTO, Santa
Barbara, California, USA, Aug. 2003, pp. 400–425.

19

[43] P. Nikander and J. Melen, “A bound end-to-end tunnel (BEET)
mode for ESP: draft-nikander-esp-beet-mode-09,” Aug. 2008, work in
progress. [Online]. Available: http://tools.ietf.org/html/draft-nikander-
esp-beet-mode-09

[44] P. Nikander and J. Laganier, “Host Identity Protocol (HIP) domain
name system (DNS) extension,” IETF RFC 5205, Mar. 2008. [Online].
Available: http://tools.ietf.org/html/rfc5205

[45] T. Heer, “LHIP: Lightweight Authentication for the Host Identity
Protocol (HIP),” Master’s thesis, University of Tubingen, Protocol-
Engineering&Distributed Systems research group, 2006.

[46] P. Nikander, T. Henderson, C. Vogt, and J. Arkko, “End-host mobility
and multihoming with the Host Identity Protocol (HIP),” IETF RFC
5206, Apr. 2008. [Online]. Available: http://tools.ietf.org/html/rfc5206

[47] A. Gurtov, M. Komu, and R. Moskowitz, “Host Identity Protocol (HIP):
Identifier/locator split for host mobility and multihoming,” Internet
Protocol Journal, vol. 12, no. 1, pp. 27–32, Mar. 2009.

[48] P. Nikander, J. Arkko, T. Aura, G. Montenegro, and E. Nordmark,
“Mobile IP version 6 route optimization security design background,”
IETF RFC 4225, Dec. 2005. [Online]. Available: http://www.rfc-
editor.org/rfc/rfc4225.txt

[49] J. Laganier, T. Koponen, and L. Eggert, “Host Identity Protocol
(HIP) registration extension,” IETF RFC 5203, Apr. 2008. [Online].
Available: http://tools.ietf.org/html/rfc5203

[50] J. Laganier and L. Eggert, “Host Identity Protocol (HIP) rendezvous
extension,” IETF RFC 5204, Mar. 2008. [Online]. Available:
http://tools.ietf.org/html/rfc5204

[51] J. Rosenberg, R. Mahy, P. Matthews, and D. Wing, “Session traversal
utilities for (NAT) (STUN),” Jul. 2008, work in progress. [Online].
Available: draft-ietf-behave-rfc3489bis-18.txt

[52] J. Rosenberg, “Traversal using relays around NAT (TURN): Relay
extensions to session traversal utilities for NAT (STUN),” Jul. 2007,
work in progress. [Online]. Available: draft-ietf-behave-turn-04.txt

[53] H. Tschofenig and D. Wing, “Utilizing Interactive Connectivity Estab-
lishment (ICE) for the Host Identity Protocol (HIP): draft-tschofenig-
hip-ice-00,” Jun. 2007, work in progress. Expires in December, 2007.

[54] J. Ylitalo, P. Salmela, and H. Tschofeing, “SPINAT: Integrating IPsec
into overlay routing,” in Proc. of the 1st International Conference on
Security and Privacy for Emerging Areas in Communications Networks
(SecureComm ’05), Sep. 2005, pp. 315–326.

[55] P. Nikander, “An architecture for authorization and delegation in dis-
tributed objec-oriented agent systems,” Ph.D. dissertation, Helsinki
University of Technology, Jun. 1999.

[56] T. Koponen, A. Gurtov, and P. Nikander, “Application mobility with Host
Identity Protocol,” in Proc. of NDSS Wireless and Security Workshop.
San Diego, CA, USA: Internet Society, Feb. 2005.

[57] J. Arkko and P. Nikander, “How to authenticate unknown principals
without trusted parties,” in Proc. of the 10th International Workshop.
Security Protocols. Cambridge, UK. Springer, Apr. 2002, pp. 5–16.

[58] A. Gurtov, D. Korzun, A. Lukyanenko, and P. Nikander, “Hi3: An
efficient and secure networking architecture for mobile hosts,” Computer
Communications, vol. 31, no. 10, pp. 2457–2467, Jun. 2008.

[59] A. D. Keromytis, V. Misra, and D. Rubenstein, “SOS: secure overlay
services,” in SIGCOMM, 2002, pp. 61–72.

[60] P. Wang, P. Ning, and D. S. Reeves, “A k-anonymous communication
protocol for overlay networks,” in Proc. of the 2nd ACM Symposium on
InformAtion, Computer and Communications Security (ASIACCS’07),
Singapore, Mar. 2007, pp. 45–56.

[61] A. Khurri, E. Vorobyeva, and A. Gurtov, “Performance of Host Identity
Protocol on lightweight hardware,” in Proc. of the 2nd ACM/IEEE
International Workshop on Mobility in the Evolving Internet Architecture
(MobiArch’07). New York, NY, USA: ACM, Aug. 2007.

[62] B. Estrem, “Secure mobile architecture (sma) vision &
architecture,” Feb. 2004, technical Study E041. [Online]. Available:
http://www.opengroup.org/products/publications/catalog/e041.htm

[63] R. Paine, “Secure mobile architecture (SMA) for automation security,”
Jul. 2007. [Online]. Available: http://google.com

[64] “Boeing IT architect pushes Secure Mobile Architecture,” Apr. 2006.
[Online]. Available: http://www.networkworld.com/news/2006/050106-
boeing-side.html

[65] E. Cooper, A. Johnston, and P. Matthews, “A distributed transport
function in P2PSIP using HIP for multi-hop overlay routing: draft-
matthews-p2psip-hip-hop-00,” Jun. 2007, work in progress. Expired in
December, 2007.

[66] J. Hautakorpi, G. Camarillo, and J. Koskela, “Utilizing HIP (Host
Identity Protocol) for P2PSIP (Peer-to-peer Session Initiation Protocol):
draft-hautakorpi-p2psip-with-hip-01.txt,” Nov. 2007, work in progress.

[67] M. Stiemerling, J. Quittek, and L. Eggert, “NAT and firewall traversal
issues of Host Identity Protocol (HIP) communication,” IETF RFC
5207, Apr. 2008. [Online]. Available: http://tools.ietf.org/html/rfc5207

[68] M. Komu and T. Henderson, “Basic Socket Interface Extensions for
Host Identity Protocol (HIP), draft-ietf-hip-native-api-05.txt,” Jul. 2008.

[69] G. Camarillo, P. Nikander, J. Hautakorpi, and A. Johnston, “HIP BONE:
Host Identity Protocol (HIP) Based Overlay Networking Environment,
draft-ietf-hip-bone-01.txt,” Mar. 2009, work in progress.

[70] T. Heer and S. Varjonen, “HIP Certificates: draft-ietf-hip-cert-00,” Oct.
2008, work in progress.

[71] T. R. Henderson and A. Gurtov, “HIP experiment report: draft-irtf-hip-
experiment-05.txt,” Mar. 2009.

Pekka Nikander received his M.Sc. and Ph.D (with
distinction) in Computer Science from Helsinki Uni-
versity of Technology, Finland, in 1992 and 1999.
At the present, he is Chief Scientist at Ericsson
Research Nomadic Lab, an industrial research lab-
oratory located in Jorvas, Finland. From 1999 to
2007 he was active in Internet standardisation at the
IETF, chairing a few working groups and authoring
some RFCs. He also served for a while at the
Internet Architecture Board (IAB). Most recently, he
has focused more on research on the future of the

Internet architecture, with special attention to economic, end-user centric, and
privacy aspects. He is a co-author of over 70 peer reviewed papers, 10 RFCs,
and some 15 patents.

Andrei Gurtov received his M.Sc. and Ph.D. de-
grees in Computer Science from the University of
Helsinki, Finland in 2000 and 2004. At the present,
he is Principal Scientist leading the Networking
Research group at the Helsinki Institute for Infor-
mation Technology focusing on the Host Identity
Protocol and next generation Internet architecture.
He is co-chairing the IRTF research group on HIP
and teaches as an adjunct professor at the Helsinki
University of Technology. Previously, his research
focused on the performance of transport protocols

in heterogeneous wireless networks. In 2000-2004, he served as a senior
researcher at TeliaSonera Finland contributing to performance optimization
of GPRS/UMTS networks, intersystem mobility, and IETF standardization.
In 2003, he spent six months as a visiting researcher in the International
Computer Science Institute at Berkeley working with Dr. Sally Floyd on
simulation models of transport protocols in wireless networks. In 2004, he
was a consultant at the Ericsson NomadicLab. Dr. Gurtov is a co-author of
over 80 publications including a book, research papers, patents, and IETF
RFCs.

Thomas R. Henderson is a network researcher and
Boeing Associate Technical Fellow in Boeing’s Re-
search & Technology division. He also is an Affiliate
Professor in the Electrical Engineering department at
the University of Washington. His research interests
are currently focused on protocols and software for
wireless-based Internets, and network simulation.
Presently, he is the Principal Investigator (PI) of
an applied research program with the U.S. Office
of Naval Research (ONR), and the PI of the NSF-
funded ns-3 simulation project. For the past five

years he has served as co-chair of the Internet Research Task Force (IRTF)
HIP research group. Tom holds a Ph.D. in EECS from the University of
California, Berkeley, and an MSEE and BSEE from Stanford University.

